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A line may take us hours, yet if it does not seem a moment’s thought
All our stitching and unstitching has been as nought.

Yeats
Adam’s Curse
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Chapter 1

Introduction

Scheme 48 is an implementation of the Scheme programming language as de-
scribed in the Revised5 Report on the Algorithmic Language Scheme [6]. It is
based on a compiler and interpreter for a virtual Scheme machine. Scheme 48
tries to be faithful to the Revised5 Scheme Report, providing neither more nor
less in the initial user environment. (This is not to say that more isn’t available
in other environments; see below.)

Scheme 48 is under continual development. Please report bugs, especially in
the VM, especially core dumps, to scheme-48-bugs@s48.org. Include the version
number x.yy from the ”Welcome to Scheme 48 x.yy” greeting message in your
bug report. It is a goal of this project to produce a bullet-proof system; we
want no bugs and, especially, no crashes. (There are a few known bugs, listed
in the doc/todo.txt file that comes with the distribution.)

Send a message to scheme-48-request@s48.org with subject ‘subscribe’ to be
put on a mailing list for announcements, discussion, bug reports, and bug fixes.

The name ‘Scheme 48’ commemorates our having written the original version
in forty-eight hours, on August 6th and 7th, 1986.
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Chapter 2

User’s guide

This chapter details Scheme 48’s user interface: its command-line arguments,
command processor, debugger, and so forth.

2.1 Command line arguments

A few command line arguments are processed by Scheme 48 as it starts up.
scheme48 [-i image] [-h heapsize] [-a argument . . . ]

-i image specifies a heap image file to resume. This defaults to a heap image
that runs a Scheme command processor. Heap images are created by the
,dump and ,build commands, for which see below.

-h heapsize specifies how much space should be reserved for allocation. Heap-
size is in words (where one word = 4 bytes), and covers both semispaces,
only one of which is in use at any given time (except during garbage col-
lection). Cons cells are currently 3 words, so if you want to make sure
you can allocate a million cons cells, you should specify -h 6000000 (ac-
tually somewhat more than this, to account for the initial heap image and
breathing room). The default heap size is 3000000 words. The system
will use a larger heap if the specified (or default) size is less than the size
of the image being resumed.

-a argument . . . is only useful with images built using ,build. The argu-
ments are passed as a list of OS strings (see section 5.15) to the procedure
specified in the ,build command. For example:

> ,open os-strings

> (define (f xs)

(write (map os-string->string xs))

(newline)

0) ;must return an integer

2



> ,build f foo.image

> ,exit

% scheme48vm -i foo.image -a mumble "foo x" -h 5000000

("mumble" "foo x" "-h" "5000000")

%

-I image argument . . . is equivalent to -i image -a argument . . . . On
most Unix-like systems, a heap image can be made executable with the
following Bourne shell commands:

% (echo ’#!/s48/install/prefix/lib/scheme48-1.9.2/scheme48vm -I’

cat original.image) >new.image
% chmod +x new.image

The usual definition of the s48 or scheme48 command is actually a shell
script that starts up the Scheme 48 virtual machine with a -i imagefile spec-
ifying the development environment heap image and a -o vm-executable spec-
ifying the location of the virtual-machine executable (the executable is needed
for loading external code on some versions of Unix; see section 8.4 for more
information). The file go in the Scheme 48 installation source directory is an
example of such a shell script.

2.2 Command processor

When you invoke the default heap image, a command processor starts running.
The command processor acts as both a read-eval-print loop, reading expressions,
evaluating them, and printing the results, and as an interactive debugger and
data inspector. See Chapter 3 for a description of the command processor.

2.3 Editing

We recommend running Scheme 48 under GNU Emacs or XEmacs using the
cmuscheme48 command package. This is in the Scheme 48 distribution’s emacs/
subdirectory and is included in XEmacs’s scheme package. It is a variant of the
cmuscheme library, which comes to us courtesy of Olin Shivers, formerly of
CMU. You might want to put the following in your Emacs init file (.emacs):

(setq scheme-program-name "scheme48")

(autoload ’run-scheme

"cmuscheme48"

"Run an inferior Scheme process."

t)

The Emacs function run-scheme can then be used to start a process running
the program scheme48 in a new buffer. To make the autoload and (require

...) forms work, you will also need to put the directory containing cmuscheme

and related files in your emacs load-path:

3



(setq load-path

(append load-path ’("scheme-48-directory/emacs")))

Further documentation can be found in the files emacs/cmuscheme48.el and
emacs/comint.el.

2.4 Performance

If you want to generally have your code run faster than it normally would, enter
inline-values mode before loading anything. Otherwise calls to primitives
(like + and cons) and in-line procedures (like not and cadr) won’t be open-
coded, and programs will run more slowly.

The system doesn’t start in inline-values mode by default because the
Scheme report permits redefinitions of built-in procedures. With this mode
set, such redefinitions don’t work according to the report, because previously
compiled calls may have in-lined the old definition, leaving no opportunity to
call the new definition.

Inline-values mode is controlled by the inline-values switch. ,set

inline-values and ,unset inline-values turn it on and off.

2.5 Disassembler

The ,dis command prints out the disassembled byte codes of a procedure.

> ,dis cons

cons

0 (protocol 2)

2 (pop)

3 (make-stored-object 2 pair)

6 (return)

>

The current byte codes are listed in the file scheme/vm/interp/arch.scm. A
somewhat out-of-date description of them can be found in [5].

The command argument is optional; if unsupplied it defaults to the current
focus object (##).

The disassembler can also be invoked on continuations and templates.

2.6 Module system

This section gives a brief description of modules and related entities. For de-
tailed information, including a description of the module configuration language,
see chapter 4.

A module is an isolated namespace, with visibility of bindings controlled
by module descriptions written in a special configuration language. A module
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may be instantiated as a package, which is an environment in which code can
be evaluated. Most modules are instantiated only once and so have a unique
package. A structure is a subset of the bindings in a package. Only by being
included in a structure can a binding be made visible in other packages. A
structure has two parts, the package whose bindings are being exported and the
set of names that are to be exported. This set of names is called an interface.
A module then has three parts:

• a set of structures whose bindings are to be visible within the module

• the source code to be evaluated within the module

• a set of exported interfaces

Instantiating a module produces a package and a set of structures, one for each
of the exported interfaces.

The following example uses define-structure to create a module that im-
plements simple cells as pairs, instantiates this module, and binds the resulting
structure to cells. The syntax (export name . . .) creates an interface con-
taining name . . . . The open clause lists structures whose bindings are visible
within the module. The begin clause contains source code.

(define-structure cells (export make-cell

cell-ref

cell-set!)

(open scheme)

(begin (define (make-cell x)

(cons ’cell x))

(define cell-ref cdr)

(define cell-set! set-cdr!)))

Cells could also have been implemented using the record facility described
in section 5.9 and available in structure define-record-type.

(define-structure cells (export make-cell

cell-ref

cell-set!)

(open scheme define-record-types)

(begin (define-record-type cell :cell

(make-cell value)

cell?

(value cell-ref cell-set!))))

With either definition the resulting structure can be used in other modules
by including cells in an open clause.

The command interpreter is always operating within a particular package.
Initially this is a package in which only the standard Scheme bindings are vis-
ible. The bindings of other structures can be made visible by using the ,open

command described in section 3.4 below.
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Note that this initial package does not include the configuration language.
Module code needs to be evaluated in the configuration package, which can be
done by using the ,config command:

> ,config (define-structure cells ...)

> ,open cells

> (make-cell 4)

’(cell . 4)

> (define c (make-cell 4))

> (cell-ref c)

4

2.7 Library

A number of useful utilities are either built in to Scheme 48 or can be loaded
from an external library. These utilities are not visible in the user environment
by default, but can be made available with the open command. For example,
to use the tables structure, do

> ,open tables

>

If the utility is not already loaded, then the ,open command will load it. Or,
you can load something explicitly (without opening it) using the load-package

command:

> ,load-package queues

> ,open queues

When loading a utility, the message ”Note: optional optimizer not invoked”
is innocuous. Feel free to ignore it.

See also the package system documentation, in chapter 4.
Not all of the the libraries available in Scheme 48 are described in this man-

ual. All are listed in files rts-packages.scm, comp-packages.scm, env-packages.scm,
and more-packages.scm in the scheme directory of the distribution, and the
bindings they export are listed in interfaces.scm and more-interfaces.scm

in the same directory.
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Chapter 3

Command processor

This chapter details Scheme 48’s command processor, which incorporates both
a read-eval-print loop and an interactive debugger. At the > prompt, you can
type either a Scheme form (expression or definition) or a command beginning
with a comma. In inspection mode (see section 3.8) the prompt changes to :

and commands no longer need to be preceded by a comma; input beginning with
a letter or digit is assumed to be a command, not an expression. In inspection
mode the command processor prints out a menu of selectable components for
the current object of interest.

3.1 Current focus value and ##

The command processor keeps track of a current focus value. This value is
normally the last value returned by a command. If a command returns multiple
values the focus object is a list of the values. The focus value is not changed
if a command returns no values or a distinguished ‘unspecific’ value. Examples
of forms that return this unspecific value are definitions, uses of set!, and (if

#f 0). It prints as #{Unspecific}.
The reader used by the command processor reads ## as a special expression

that evaluates to the current focus object.

> (list ’a ’b)

’(a b)

> (car ##)

’a

> (symbol->string ##)

"a"

> (if #f 0)

#{Unspecific}
> ##

"a"

>
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3.2 Command levels

If an error, keyboard interrupt, or other breakpoint occurs, or the ,push com-
mand is used, the command processor invokes a recursive copy of itself, pre-
serving the dynamic state of the program when the breakpoint occurred. The
recursive invocation creates a new command level. The command levels form
a stack with the current level at the top. The command prompt indicates the
number of stopped levels below the current one: > or : for the base level and
n> or n: for all other levels, where n is the command-level nesting depth. The
levels setting described below can be used to disable the automatic pushing
of new levels.

The command processor’s evaluation package and the value of the current
focus value are local to each command level. They are preserved when a new
level is pushed and restored when it is discarded. The settings of all other
settings are shared by all command levels.

〈eof〉
Discards the current command level and resumes running the level down.
〈eof〉 is usually control-D at a Unix shell or control-C control-D using the
Emacs cmuscheme48 library.

,pop

The same as 〈eof〉.

,proceed [exp ...]
Proceed after an interrupt or error, resuming the next command level
down, delivering the values of exp . . . to the continuation. Interrupt
continuations discard any returned values. ,Pop and ,proceed have the
same effect after an interrupt but behave differently after errors. ,Proceed
restarts the erroneous computation from the point where the error oc-
curred (although not all errors are proceedable) while ,pop (and 〈eof〉)
discards it and prompts for a new command.

,push

Pushes a new command level on above the current one. This is useful if
the levels setting has been used to disable the automatic pushing of new
levels for errors and interrupts.

,reset [number]
Pops down to a given level and restarts that level. Number defaults to zero,
,reset restarts the command processor, discarding all existing levels.

Whenever moving to an existing level, either by sending an 〈eof〉 or by using
,reset or the other commands listed above, the command processor runs all
of the dynamic-wind “after” thunks belonging to stopped computations on the
discarded level(s).
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3.3 Logistical commands

,load filename . . .
Loads the named Scheme source file(s). Easier to type than (load "filename")
because you don’t have to shift to type the parentheses or quote marks.
(However, it is still possible to specify a filename as a Scheme string literal,
with quote marks—you’ll need this for filenames containing whitespace.)
Also, it works in any package, unlike (load "filename"), which will work
only in packages in which the variable load is defined appropriately.

,exit [exp]
Exits back out to shell (or executive or whatever invoked Scheme 48 in the
first place). Exp should evaluate to an integer. The integer is returned to
the calling program. The default value of exp is zero, which, on Unix, is
generally interpreted as success.

3.4 Module commands

There are many commands related to modules. Only the most commonly used
module commands are described here; documentation for the rest can be found
in section 4.8. There is also a brief description of modules, structures, and
packages in section 2.6 below.

,open structure . . .
Makes the bindings in the structures visible in the current package. The
packages associated with the structures will be loaded if this has not al-
ready been done (the ask-before-loading setting can be used to disable
the automatic loading of packages).

,config [command]
Executes command in the config package, which includes the module
configuration language. For example, use

,config ,load filename

to load a file containing module definitions. If no command is given, the
config package becomes the execution package for future commands.

,user [command]
This is similar to the ,config. It moves to or executes a command in the
user package (which is the default package when the Scheme 48 command
processor starts).

3.5 Debugging commands

,preview

Somewhat like a backtrace, but because of tail recursion you see less than
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you might in debuggers for some other languages. The stack to display is
chosen as follows:

1. If the current focus object is a continuation or a thread, then that
continuation or thread’s stack is displayed.

2. Otherwise, if the current command level was initiated because of a
breakpoint in the next level down, then the stack at that breakpoint
is displayed.

3. Otherwise, there is no stack to display and a message is printed to
that effect.

One line is printed out for each continuation on the chosen stack, going
from top to bottom.

,run exp
Evaluate exp, printing the result(s) and making them (or a list of them,
if exp returns multiple results) the new focus object. The ,run command
is useful in inspection mode (see section 3.8 below) and when writing
command programs (see section 3.9 below).

,trace name ...

Start tracing calls to the named procedure or procedures. With no argu-
ments, displays all procedures currently traced. This affects the binding of
name, not the behavior of the procedure that is its current value. Name is
redefined to be a procedure that prints a message, calls the original value
of name, prints another message, and finally passes along the value(s)
returned by the original procedure.

,untrace name ...

Stop tracing calls to the named procedure or procedures. With no argu-
ment, stop tracing all calls to all procedures.

,condition

The ,condition command displays the condition object describing the
error or interrupt that initiated the current command level. The condition
object becomes the current focus value. This is particularly useful in
conjunction with the inspector. For example, if a procedure is passed
the wrong number of arguments, do ,condition followed by ,inspect to
inspect the procedure and its arguments.

,bound? name
Display the binding of name, if there is one, and otherwise prints ‘Not
bound’.

,expand form Show macro expansion of form, if any, fully expanding all
macros in form.

,where procedure
Display name of file containing procedure’s source code.
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3.6 Profiling commands

After loading the profile-commands structure via

,load-package profile-commands

Scheme 48 provides a basic profiler, with support for flat and call-graph profiles.
In addition to call- and runtimes the heap memory usage is estimated as well. By
adding the byte-code optimizer profiler-instrumentation to the definition
of a structure via a clause

(optimize profiler-instrumentation)

in the structure definition, code will by instrumented with calls to the profiler.
The call-times to instrumented code can then be measured exactly. Without
instrumentation, the profiler is solely based on sampling and therefore has only
limited accuracy. Any evaluation can be profiled with the following command:

,profile command
Evaluate command under the profiler, printing the profiling result and
making the return value(s) of command the new focus object.

The output of the profiler is explained on the basis of the following piece of
senseless code:

(define (c x)

(if (= x 0)

0

(+ 1 (c (- x 1)))))

(define (b x)

(let ((y (- x 1)))

(if (> y 0)

(begin

(c y)

(a y)

(+ 1 (a y)))

0)))

(define (a x)

(let ((y (- x 1)))

(if (> y 0)

(begin

(c y)

(b y)

(+ 1 (b y)))

0)))

(define (main x)

(+ 1 (a x)))
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The profiler produces the following output:

> ,profile (main 21)

** Samples: 60 (approx. one per 40ms)

** Interrupt time: 50ms

** Real run time: 2430ms

** Total memory: 22k

** GC runs: 0

** Flat result (times in ms):

time cumu self mem calls ms/call name

61.66% 1498 1498 2k 37+51 17 c in "x.scm"

25.0% 2430 608 10k 436 6 b in "x.scm"

13.33% 2430 324 10k 442 5 a in "x.scm"

0.0% 2430 0 0k 1 2430 main in "x.scm"

** Tree result (times in ms):

i time self child mem calls name

0 100.0% 0 2430 0k 0 <profiler> [0]

0 2430 0k 1/1 main in "x.scm" [1]

=========================================================

441/442 b in "x.scm" <cycle 0> [3]

324 891 10k 1/442 main in "x.scm" [1]

1 100.0% 324 891 10k 442 a in "x.scm" <cycle 0> [2]

891 0 1k 22/37 c in "x.scm" [4]

436/436 b in "x.scm" <cycle 0> [3]

=========================================================

436/436 a in "x.scm" <cycle 0> [2]

2 100.0% 608 608 10k 436 b in "x.scm" <cycle 0> [3]

608 0 1k 15/37 c in "x.scm" [4]

441/442 a in "x.scm" <cycle 0> [2]

=========================================================

0 2430 0k 1/1 <profiler> [0]

3 100.0% 0 2430 0k 1 main in "x.scm" [1]

324 891 10k 1/442 a in "x.scm" <cycle 0> [2]

=========================================================

608 0 1k 15/37 b in "x.scm" <cycle 0> [3]

891 0 1k 22/37 a in "x.scm" <cycle 0> [2]

4 61.66% 1498 0 2k 37+51 c in "x.scm" [4]

=========================================================

932 1498 20k 1/1 main in "x.scm" [1]

0 100.0% 932 1498 20k 1+877 <cycle 0 as a whole>

324 891 10k 441 a in "x.scm" <cycle 0> [2]
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608 608 10k 436 b in "x.scm" <cycle 0> [3]

0 0 2k 37/37 c in "x.scm" [4]

The formatting of the output is based on the output of GNU gprof 1.
First, general information about the profiling is shown:

• samples: total number of samples taken and the average time between
two samples

• interrupt time: theoretical interrupt time, the time between two sam-
ples

• real run time: the total run time of the evaluation, simple measurement
from the beginning to the end of the evaluation

• total memory: the total amount of memory used by the program, here
in kilobytes

• GC runs: the number of times the garbage collector was running while
evaluating

The flat profile gives overall statistics for each procedure in the program:

• time: percentage of time the procedure has in the program (based on
“self”)

• cumu: total cumulative time the procedure was running

• self: total time the procedure was running itself (without children)

• mem: approximated memory usage of the procedure

• calls: the number of non-recursive calls to the procedure. Recursive
calls are displayed after an optionally appended ”+” to former number
(see procedure c in example output above).

• ms/call: estimate of the time per call (with children), based on non-
recursive calls and “cumu”.

• name: the name of the procedure and the file it is defined in

The tree result displays profiling information depending on the caller of a
particular procedure. As in gprof output, for each procedure there is an entry.
Entries are separated by lines of =s. Each entry displays the callers (indented),
the procedure itself and the procedure called (indented). The meaning of the
fields depends on the type of the entry, for example:

1part of the GNU Binary Utilities: http://www.gnu.org/software/binutils/

13



i time self child mem calls name

324 891 10k 1/442 main [1]

1 100.0% 324 891 10k 442 a <cycle 0> [2]

891 0 1k 22/37 c [4]

Every procedure has a unique index number i (here “1”), based on the
position in the call-graph. It is used to quickly find the corresponding entry.
The number is appended to the procedure name (in brackets). The meaning of
the “cycle” suffix is explained below.

Callers (here main):

• self: time spent directly in a when called by main

• child: time spent in children of a when called by main

• mem: memory usage of a when called by main

• calls: two numbers: number of calls to a from main and total number of
non-recursive calls to a

Primary line (here a):

• time: total percentage of time a was running

• self: total time spent directly in a

• child: total time spent in children of a

• mem: total memory usage of a

• calls: the total number of non-recursive calls to a. Recursive calls are
displayed after an optional +.

Called (here c):

• self: time spent directly in c when called by a

• child: time spent in children of c when called by a

• mem: memory usage of c when called by a

• calls: two numbers: number of calls to c from a and total number of
non-recursive calls to c

A special treatment is needed for mutual-recursive procedures. In the ex-
ample, a calls b and b calls a. This is called a cycle. If a would call another
procedure d and d would call a, all three procedures form a cycle.

Cycles have a separate entry in the call graph. This entry consists of the
callers into the cycle, the primary line of the cycle, the member procedures of
the cycle and the external procedures called by the cycle:
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932 1498 20k 1/1 main [1]

0 100.0% 932 1498 20k 1+877 <cycle 0 as a whole>

324 891 10k 441 a <cycle 0> [2]

608 608 10k 436 b <cycle 0> [3]

0 0 2k 37/37 c [4]

Callers (here main):

• the meaning of the fields are the same as above. The member procedures
of the cycle are seen as a whole.

Primary line:

• time: total percentage of time any procedure of the cycle was running

• self: total time spent directly in a procedure of the cycle

• child: total time spent in external children of a

• mem: sum of memory usage of all cycle member procedures

• calls: the total number of external calls to the cycle and the total
number of calls in the cycle internally

Member procedures:

• the meaning of the fields are the same as above, except. . .

• calls: the number of calls to the member procedure from within the cycle

External procedures (here c):

• the meaning of the fields are the same as with the member procedures,
except. . .

• calls: the number of calls to the external procedure from the cycle and
the total number of non-recursive calls to the external procedure

In the current implementation, there are some issues that need to be con-
sidered: in the default configuration, samples are taken every 50 milliseconds.
Procedures with a by-call run time shorter than the interrupt time are likely
to be profiled inaccurately or may not be seen at all, if they have not been
instrumented.

The default interrupt time can be set with the profiler-interrupt-time

command processor setting, see 3.7. For example,

,set profiler-interrupt-time 200

sets the default profiler sampling interrupt time to 200ms.
Because the interrupt is shared with the thread system, profiling may cause

performance issues with multi-threaded programs. Also, programs with deep
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recursion (resulting in large continuations) can cause the profiler to use a sig-
nificant percentage of the total run time.

By default, call times are measured by the sampling process. When code
had been instrumented, call times of those procedures will be measured exactly.
When only instrumented code should be considered in the output of the profiler,
the command processor setting profiler-measure-noninstr can be set to off.

Scheme 48 optimizes tail calls. Thus, the profiler cannot “see” tail calls and
in some situations, the output of the profiler may show that procedures directly
call their “grandchildren”.

3.6.1 How the profiler works

The profiler is based on taking samples of the current stack of continuations,
the call-stack. Therefore it schedules the alarm interrupt at a regular interval
specified by the profiler-interrupt-time command processor setting. Be-
cause the thread system uses the alarm interrupt as well, the profiler interrupt
handler calls the handler of the thread system after processing the sample.

The profiler interrupt handler first captures the current continuation and
follows the continuation-stack down to the continuation of the profile-thunk

procedure, which called the thunk to be profiled. Each continuation with the
corresponding code template is stored in a stack of stackentry records.

This *cur-stack* is compared from bottom to top with the *last-stack*,
the stack captured while the prior sampling interrupt. The statistics gathered
are stored in profinfo records.

For each stack-entry in the *cur-stack*, several possibilities exist in con-
junction to the entry at the same depth in the *last-stack*:

• there is no such entry: the continuation must be the result of a new call

• both entries are the same continuation: nothing changed, the procedure
is still running

• entries are not the same continuation: the following entries up in the stack
must have changed. If the templates of the current entries are the same,
the continuation counts as the still same call to the procedure (but at
another expression in the procedure). A such situation only counts as
a new call if the continuation object has changed, but the continuation
program-counter, arguments and the template stayed the same.

As we ascend in the call-stack, changes in the lower levels indicate that all
entries above have to be new calls. This way, the profiler gathers information
about how often a template is called by another template.

Additionally, every time a procedure is seen, we record this “occurrence”. If
the procedure is a the top of the stack, it is currently running. Based on these
numbers, the average interrupt time and the number of calls, we can estimate
the self and child times.

While running, the profiler collects information about heap memory usage as
well. After comparing the current with the last stack, the profiler knows which
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procedures finished, which procedures are new and which procedure called the
new procedures. This information is used to distribute the difference in heap
memory usage between the prior and the current sample. The profiler uses the
memory-status primitive for retrieving available heap space and the number
of garbage collector runs (gc-count). Difference in used memory between two
samples is distributed by the following principles:

• if gc-count increased, distribution cannot be done

• if the same continuation is still at top, credit its template with all used
memory between the two samplings

• if there are stackentry-templates gone or new, distribute the used memory
equally between them:

– gone templates could have used some memory before “returning”

– new templates could have used some memory while running

– the caller of new templates could have used some memory between
the calling of gone and new procedures

The byte-code optimizer profiler-instrumentation adds a call to the
“profile-count” procedure of the profiler structure. This procedure is respon-
sible for the exact call-times measurement.

After collection of the data, procedures are numbered and cycles are detected
by ascending in the call tree. Time is being propagated from top to bottom,
remembering self and child times. Most of the time, cycles are being considered
as one procedure.

3.7 Settings

There are a number of settings that control the behavior of the command pro-
cessor; most of them are booleans. They can be set using the ,set and ,unset

commands.

,set setting [on | off | literal | ?]

This sets the value of setting setting . For a boolean setting, the second
argument must be on or off; it then defaults to on. Otherwise, the value
must be a literal, typically a positive number. If the second argument is
? the value of setting is is displayed and not changed. Doing ,set ? will
display a list of the setting and their current values.

,unset setting
,unset setting is the same as ,set setting off.

The settings are as follows:
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batch (boolean)
In ‘batch mode’ any error or interrupt that comes up will cause Scheme 48
to exit immediately with a non-zero exit status. Also, the command pro-
cessor doesn’t print prompts. Batch mode is off by default.

levels (boolean)
Enables or disables the automatic pushing of a new command level when
an error, interrupt, or other breakpoint occurs. When enabled (the de-
fault), breakpoints push a new command level, and 〈eof〉 (see above) or
,reset is required to return to top level. The effects of pushed command
levels include:

• a longer prompt

• retention of the continuation in effect at the point of error

• confusion among some newcomers

With levels disabled one must issue a ,push command immediately fol-
lowing an error in order to retain the error continuation for debugging
purposes; otherwise the continuation is lost as soon as the focus object
changes. If you don’t know anything about the available debugging tools,
then levels might as well be disabled.

break-on-warnings (boolean)
Enter a new command level when a warning is produced, just as when an
error occurs. Normally warnings only result in a displayed message and
the program does not stop executing.

ask-before-loading (boolean)
If on, the system will ask before loading modules that are arguments to
the ,open command. Ask-before-loading is off by default.

> ,set ask-before-loading

will ask before loading modules

> ,open random

Load structure random (y/n)? y

>

load-noisily (boolean)
When on, the system will print out the names of modules and files as they
are loaded. Load-noisily is off by default.

> ,set load-noisily

will notify when loading modules and files

> ,open random

[random /usr/local/lib/scheme48/big/random.scm]

>
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inline-values (boolean)
This controls whether or not the compiler is allowed to substitute variables’
values in-line. When inline-values mode is on, some Scheme procedures
will be substituted in-line; when it is off, none will. Section 2.4 has more
information.

inspector-menu-limit (positive integer)
This controls how many items the displayed portion of the inspector menu
contains at most. (See Section 3.8.)

inspector-writing-depth (positive integer)
This controls the maximum depth to which the inspector prints values.
(See Section 3.8.)

inspector-writing-length (positive integer)
This controls the maximum length to which the inspector prints values.
(See Section 3.8.)

condition-writing-depth (positive integer)
This controls the maximum depth to which conditions are printed.

condition-writing-length (positive integer)
This controls the maximum length to which conditions are printed.

profiler-interrupt-time (positive integer)
This controls the time between two profiler sampling interrupts (in mil-
liseconds, see section 3.6).

profiler-measure-noninstr (boolean)
When this flag is enabled, call-times will be measured by the sampling
process. When it is disabled, call-times will only be measured when the
procedure has been instrumented (see section 3.6).

trace-writing-length (positive integer)
This controls the maximum length to which tracing prints procedure calls.

3.8 Inspection mode

There is a data inspector available via the ,inspect and ,debug commands.
The inspector is particularly useful with procedures, continuations, and records.
The command processor can be taken out of inspection mode by using the q

command. When in inspection mode, input that begins with a letter or digit
is read as a command, not as an expression. To see the value of a variable or
number, do (begin exp) or use the ,run exp command.

In inspection mode the command processor prints out a menu of selectable
components for the current focus object. To inspect a particular component,
just type the corresponding number in the menu. That component becomes the
new focus object. For example:
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> ,inspect ’(a (b c) d)

(a (b c) d)

[0] a

[1] (b c)

[2] d

: 1

(b c)

[0] b

[1] c

:

When a new focus object is selected the previous one is pushed onto a stack.
You can pop the stack, reverting to the previous object, with the u command,
or use the stack command to move to an earlier object.

Commands useful when in inspection mode:

• u (up) pop object stack

• m (more) print more of a long menu

• (...) evaluate a form and select result

• q quit

• template select a closure or continuation’s template (Templates are the
static components of procedures; these are found inside of procedures and
continuations, and contain the quoted constants and top-level variables
referred to by byte-compiled code.)

• d (down) move to the next continuation (current object must be a contin-
uation)

• menu print the selection menu for the focus object

Multiple selection commands (u, d, and menu indexes) may be put on a
single line.

All ordinary commands are available when in inspection mode. Similarly, the
inspection commands can be used when not in inspection mode. For example:

> (list ’a ’(b c) ’d)

’(a (b c) d)

> ,1

’(b c)

> ,menu

[0] b

[1] c

>
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If the current command level was initiated because of a breakpoint in the
next level down, then ,debug will invoke the inspector on the continuation at
the point of the error. The u and d (up and down) commands then make the
inspected-value stack look like a conventional stack debugger, with continuations
playing the role of stack frames. D goes to older or deeper continuations (frames),
and u goes back up to more recent ones.

3.9 Command programs

The exec package contains procedures that are used to execute the command
processor’s commands. A command ,foo is executed by applying the value of the
identifier foo in the exec package to the (suitably parsed) command arguments.

,exec [command]
Evaluate command in the exec package. For example, use

,exec ,load filename

to load a file containing commands. If no command is given, the exec

package becomes the execution package for future commands.

The required argument types are as follows:

• filenames should be strings

• other names and identifiers should be symbols

• expressions should be s-expressions

• commands (as for ,config and ,exec itself) should be lists of the form
(command-name argument ...) where command-name is a symbol.

For example, the following two commands are equivalent:

,config ,load my-file.scm

,exec (config ’(load "my-file.scm"))

The file scheme/vm/load-vm.scm in the source directory contains an exam-
ple of an exec program.

3.10 Building images

,dump filename [identification]
Writes the current heap out to a file, which can then be run using the
virtual machine. The new image file includes the command processor. If
present, identification should be a string (written with double quotes);
this string will be part of the greeting message as the image starts up.
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,build exp filename [option . . .]
Like ,dump, except that the image file contains the value of exp, which
should be a procedure of one argument, instead of the command processor.
When filename is resumed, that procedure will be invoked on the VM’s
-a arguments, which are passed as a list of OS strings (see section 5.15.
The procedure should return an integer, which is returned to the program
that invoked the VM. The command processor and debugging system are
not included in the image (unless you go to some effort to preserve them,
such as retaining a continuation).

If no-warnings appears as an option after the file name, no warnings
about undefined external bindings (see Section 8.2) will be printed upon
resuming the image. This is useful when the definitions of external bind-
ings appear in shared objects that are only loaded after the resumption of
the image.

Doing ,flush before building an image will reduce the amount of de-
bugging information in the image, making for a smaller image file, but
if an error occurs, the error message may be less helpful. Doing ,flush

source maps before loading any programs used in the image will make it
still smaller. See section 3.11 for more information.

3.11 Resource query and control

,time exp
Measure execution time.

,collect

Invoke the garbage collector. Ordinarily this happens automatically, but
the command tells how much space is available before and after the col-
lection.

,keep kind

,flush kind
These control the amount of debugging information retained after com-
piling procedures. This information can consume a fair amount of space.
kind is one of the following:

• maps - environment maps (local variable names, for inspector)

• source - source code for continuations (displayed by inspector)

• names - procedure names (as displayed by write and in error mes-
sages)

• files - source file names

These commands refer to future compilations only, not to procedures that
already exist. To have any effect, they must be done before programs are
loaded. The default is to keep all four types.
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,flush

The flush command with no argument deletes the database of names of
initial procedures. Doing ,flush before a ,build or ,dump will make the
resulting image significantly smaller, but will compromise the information
content of many error messages.

3.12 Threads

Each command level has its own set of threads. These threads are suspended
when a new level is entered and resumed when the owning level again becomes
the current level. A thread that raises an error is not resumed unless explicitly
restarted using the ,proceed command. In addition to any threads spawned
by the user, each level has a thread that runs the command processor on that
level. A new command-processor thread is started if the current one dies or is
terminated. When a command level is abandoned for a lower level, or when a
level is restarted using ,reset, all of the threads on that level are terminated
and any dynamic-wind “after” thunks are run.

The following commands are useful when debugging multithreaded pro-
grams:

,resume [number]
Pops out to a given level and resumes running all threads at that level.
Number defaults to zero.

,threads

Invokes the inspector on a list of the threads running at the next lower
command level.

,exit-when-done [exp]
Waits until all user threads have completed and then exits back out to
shell (or executive or whatever invoked Scheme 48 in the first place). Exp
should evaluate to an integer which is then returned to the calling program.

3.13 Quite obscure

,go exp
This is like ,exit exp except that the evaluation of exp is tail-recursive
with respect to the command processor. This means that the command
processor itself can probably be GC’ed, should a garbage collection occur
in the execution of exp. If an error occurs Scheme 48 will exit with a
non-zero value.

,translate from to
For load and the ,load command (but not for open-{in|out}put-file),
file names beginning with the string from will be changed so that the initial
from is replaced by the string to. E.g.
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,translate /usr/gjc/ /zu/gjc/

will cause (load "/usr/gjc/foo.scm") to have the same effect as (load
"/zu/gjc/foo.scm").

,from-file filename form ... ,end

This is used by the cmuscheme48 Emacs library to indicate the file from
which the forms came. Filename is then used by the command processor
to determine the package in which the forms are to be evaluated.
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Chapter 4

Module system

This chapter describes Scheme 48’s module system. The module system is
unique in the extent to which it supports both static linking and rapid turnaround
during program development. The design was influenced by Standard ML
modules[7] and by the module system for Scheme Xerox[4]. It has also been
shaped by the needs of Scheme 48, which is designed to run both on worksta-
tions and on relatively small (less than 1 Mbyte) embedded controllers.

Except where noted, everything described here is implemented in Scheme 48,
and exercised by the Scheme 48 implementation and some application programs.

Unlike the Common Lisp package system, the module system described here
controls the mapping of names to denotations, not the mapping of strings to
symbols.

4.1 Introduction

The module system supports the structured division of a corpus of Scheme
software into a set of modules. Each module has its own isolated namespace,
with visibility of bindings controlled by module descriptions written in a special
configuration language.

A module may be instantiated multiple times, producing several packages,
just as a lambda-expression can be instantiated multiple times to produce several
different procedures. Since single instantiation is the normal case, we will defer
discussion of multiple instantiation until a later section. For now you can think
of a package as simply a module’s internal environment mapping names to
denotations.

A module exports bindings by providing views onto the underlying package.
Such a view is called a structure (terminology from Standard ML). One module
may provide several different views. A structure is just a subset of the pack-
age’s bindings. The particular set of names whose bindings are exported is the
structure’s interface.

A module imports bindings from other modules by either opening or ac-
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cessing some structures that are built on other packages. When a structure is
opened, all of its exported bindings are visible in the client package.

For example:

(define-structure foo (export a c cons)

(open scheme)

(begin (define a 1)

(define (b x) (+ a x))

(define (c y) (* (b a) y))))

(define-structure bar (export d)

(open scheme foo)

(begin (define (d w) (+ a (c w)))))

This configuration defines two structures, foo and bar. foo is a view on a
package in which the scheme structure’s bindings (including define and +) are
visible, together with bindings for a, b, and c. foo’s interface is (export a

c cons), so of the bindings in its underlying package, foo only exports those
three. Similarly, structure bar consists of the binding of d from a package in
which both scheme’s and foo’s bindings are visible. foo’s binding of cons is
imported from the Scheme structure and then re-exported.

A module’s body, the part following begin in the above example, is evalu-
ated in an isolated lexical scope completely specified by the package definition’s
open and access clauses. In particular, the binding of the syntactic operator
define-structure is not visible unless it comes from some opened structure.
Similarly, bindings from the scheme structure aren’t visible unless they become
so by scheme (or an equivalent structure) being opened.

4.2 The configuration language

The configuration language consists of top-level defining forms for modules and
interfaces. Its syntax is given in figure 4.1.

A define-structure form introduces a binding of a name to a structure. A
structure is a view on an underlying package which is created according to the
clauses of the define-structure form. Each structure has an interface that
specifies which bindings in the structure’s underlying package can be seen via
that structure in other packages.

An open clause specifies which structures will be opened up for use inside the
new package. At least one structure must be specified or else it will be impossi-
ble to write any useful programs inside the package, since define, lambda, cons,
etc. will be unavailable. Packages typically include scheme, which exports all
bindings appropriate to Revised5 Scheme, in an open clause. For building struc-
tures that export structures, there is a defpackage package that exports the
operators of the configuration language. Many other structures, such as record
and hash table facilities, are also available in the Scheme 48 implementation.
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〈configuration〉 −→ 〈definition〉∗
〈definition〉 −→ (define-structure 〈name〉 〈interface〉 〈clause〉∗)

| (define-structures ((〈name〉 〈interface〉)∗) 〈clause〉∗)
| (define-interface 〈name〉 〈interface〉)
| (define-syntax 〈name〉 〈transformer-spec〉)

〈clause〉 −→ (open 〈structure〉∗)
| (access 〈name〉∗)
| (begin 〈program〉)
| (files 〈filespec〉∗)
| (optimize 〈optimize-spec〉∗)
| (for-syntax 〈clause〉∗)

〈interface〉 −→ (export 〈item〉∗)
| 〈name〉
| (compound-interface 〈interface〉∗)

〈item〉 −→ 〈name〉
| (〈name〉 〈type〉)
| ((〈name〉∗) 〈type〉)

〈structure〉 −→ 〈name〉
| (modify 〈structure〉 〈modifier〉∗)
| (subset 〈structure〉 (〈name〉∗))
| (with-prefix 〈structure〉 〈name〉)

〈modifier〉 −→ (expose 〈name〉∗)
| (hide 〈name〉∗)
| (rename (〈name〉0 〈name〉1)∗)
| (alias (〈name〉0 〈name〉1)∗)
| (prefix 〈name〉)

Figure 4.1: The configuration language.

The modify, subset, and prefix forms produce new views on existing struc-
tures by renaming or hiding exported names. Subset returns a new structure
that exports only the listed names from its 〈structure〉 argument. With-prefix
returns a new structure that adds 〈prefix〉 to each of the names exported by the
〈structure〉 argument. For example, if structure s exports a and b, then

(subset s (a))

exports only a and

(with-prefix s p/)

exports a as p/a and b as p/b.
Both subset and with-prefix are simple macros that expand into uses of

modify, a more general renaming form. In a modify structure specification
the 〈command〉s are applied to the names exported by 〈structure〉 to produce a
new set of names for the 〈structure〉’s bindings. Expose makes only the listed
names visible. Hide makes all but the listed names visible. Rename makes each
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〈name〉0 visible as 〈name〉1 name and not visible as 〈name〉0 , while alias makes
each 〈name〉0 visible as both 〈name〉0 and 〈name〉1. Prefix adds 〈name〉 to the
beginning of each exported name. The modifiers are applied from right to left.
Thus

(modify scheme (prefix foo/) (rename (car bus))))

makes car available as foo/bus.

The package’s body is specified by begin and/or files clauses. begin and
files have the same semantics, except that for begin the text is given directly
in the package definition, while for files the text is stored somewhere in the
file system. The body consists of a Scheme program, that is, a sequence of
definitions and expressions to be evaluated in order. In practice, we always use
files in preference to begin; begin exists mainly for expository purposes.

A name’s imported binding may be lexically overridden or shadowed by
defining the name using a defining form such as define or define-syntax.
This will create a new binding without having any effect on the binding in
the opened package. For example, one can do (define car ’chevy) without
affecting the binding of the name car in the scheme package.

Assignments (using set!) to imported and undefined variables are not al-
lowed. In order to set! a top-level variable, the package body must contain
a define form defining that variable. Applied to bindings from the scheme

structure, this restriction is compatible with the requirements of the Revised5

Scheme report.

It is an error for two of a package’s opened structures to export two different
bindings for the same name. However, the current implementation does not
check for this situation; a name’s binding is always taken from the structure
that is listed first within the open clause. This may be fixed in the future.

File names in a files clause can be symbols, strings, or lists (Maclisp-style
“namelists”). A “.scm” file type suffix is assumed. Symbols are converted
to file names by converting to upper or lower case as appropriate for the host
operating system. A namelist is an operating-system-independent way to specify
a file obtained from a subdirectory. For example, the namelist (rts record)

specifies the file record.scm in the rts subdirectory.

If the define-structure form was itself obtained from a file, then file names
in files clauses are interpreted relative to the directory in which the file con-
taining the define-structure form was found. You can’t at present put an
absolute path name in the files list.

4.3 Interfaces

define-interface

An interface can be thought of as the type of a structure. In its basic form it
is just a list of variable names, written (export name ...). However, in place
of a name one may write (name type), indicating the type of name’s binding.
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The type field is optional, except that exported macros must be indicated with
type :syntax.

Interfaces may be either anonymous, as in the example in the introduction,
or they may be given names by a define-interface form, for example

(define-interface foo-interface (export a c cons))

(define-structure foo foo-interface ...)

In principle, interfaces needn’t ever be named. If an interface had to be given at
the point of a structure’s use as well as at the point of its definition, it would be
important to name interfaces in order to avoid having to write them out twice,
with risk of mismatch should the interface ever change. But they don’t.

Still, there are several reasons to use define-interface:

1. It is important to separate the interface definition from the package def-
initions when there are multiple distinct structures that have the same
interface — that is, multiple implementations of the same abstraction.

2. It is conceptually cleaner, and often useful for documentation purposes,
to separate a module’s specification (interface) from its implementation
(package).

3. Our experience is that configurations that are separated into interface
definitions and package definitions are easier to read; the long lists of
exported bindings just get in the way most of the time.

The compound-interface operator forms an interface that is the union of
two or more component interfaces. For example,

(define-interface bar-interface

(compound-interface foo-interface (export mumble)))

defines bar-interface to be foo-interface with the name mumble added.

4.4 Macros

Hygienic macros, as described in [2, 3], are implemented. Structures may ex-
port macros; auxiliary names introduced into the expansion are resolved in the
environment of the macro’s definition.

For example, the scheme structure’s delay macro is defined by the rewrite
rule

(delay exp) =⇒ (make-promise (lambda () exp)).

The variable make-promise is defined in the scheme structure’s underlying pack-
age, but is not exported. A use of the delay macro, however, always accesses
the correct definition of make-promise. Similarly, the case macro expands into
uses of cond, eqv?, and so on. These names are exported by scheme, but their
correct bindings will be found even if they are shadowed by definitions in the
client package.
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4.5 Higher-order modules

There are define-module and define forms for defining modules that are in-
tended to be instantiated multiple times. But these are pretty kludgey — for
example, compiled code isn’t shared between the instantiations — so we won’t
describe them yet. If you must know, figure it out from the following grammar.

〈definition〉 −→ (define-module (〈name〉 (〈name〉 〈interface〉)∗)
〈definition〉∗
〈name〉)

| (define 〈name〉 (〈name〉 〈name〉∗))

4.6 Compiling and linking

Scheme 48 has a static linker that produces stand-alone heap images from mod-
ule descriptions. The programmer specifies a particular procedure in a particu-
lar structure to be the image’s startup procedure (entry point), and the linker
traces dependency links as given by open and access clauses to determine the
composition of the heap image.

There is not currently any provision for separate compilation; the only input
to the static linker is source code. However, it will not be difficult to implement
separate compilation. The unit of compilation is one module (not one file). Any
opened or accessed structures from which macros are obtained must be processed
to the extent of extracting its macro definitions. The compiler knows from the
interface of an opened or accessed structure which of its exports are macros.
Except for macros, a module may be compiled without any knowledge of the
implementation of its opened and accessed structures. However, inter-module
optimization may be available as an option.

The main difficulty with separate compilation is resolution of auxiliary bind-
ings introduced into macro expansions. The module compiler must transmit to
the loader or linker the search path by which such bindings are to be resolved.
In the case of the delay macro’s auxiliary make-promise (see example above),
the loader or linker needs to know that the desired binding of make-promise is
the one apparent in delay’s defining package, not in the package being loaded
or linked.

4.7 Semantics of configuration mutation

During program development it is often desirable to make changes to packages
and interfaces. In static languages it may be necessary to recompile and re-link
a program in order for such changes to be reflected in a running system. Even in
interactive Common Lisp implementations, a change to a package’s exports often
requires reloading clients that have already mentioned names whose bindings
change. Once read resolves a use of a name to a symbol, that resolution is
fixed, so a change in the way that a name resolves to a symbol can only be
reflected by re-reading all such references.
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The Scheme 48 development environment supports rapid turnaround in mod-
ular program development by allowing mutations to a program’s configuration,
and giving a clear semantics to such mutations. The rule is that variable bind-
ings in a running program are always resolved according to current structure
and interface bindings, even when these bindings change as a result of edits to
the configuration. For example, consider the following:

(define-interface foo-interface (export a c))

(define-structure foo foo-interface

(open scheme)

(begin (define a 1)

(define (b x) (+ a x))

(define (c y) (* (b a) y))))

(define-structure bar (export d)

(open scheme foo)

(begin (define (d w) (+ (b w) a))))

This program has a bug. The variable b, which is free in the definition of d, has
no binding in bar’s package. Suppose that b was supposed to be exported by
foo, but was omitted from foo-interface by mistake. It is not necessary to
re-process bar or any of foo’s other clients at this point. One need only change
foo-interface and inform the development system of that change (using, say,
an appropriate Emacs command), and foo’s binding of b will be found when
procedure d is called.

Similarly, it is also possible to replace a structure; clients of the old structure
will be modified so that they see bindings from the new one. Shadowing is also
supported in the same way. Suppose that a client package C opens a structure
foo that exports a name x, and foo’s implementation obtains the binding of
x as an import from some other structure bar. Then C will see the binding
from bar. If one then alters foo so that it shadows bar’s binding of x with a
definition of its own, then procedures in C that reference x will automatically
see foo’s definition instead of the one from bar that they saw earlier.

This semantics might appear to require a large amount of computation on
every variable reference: The specified behavior requires scanning the package’s
list of opened structures, examining their interfaces, on every variable reference,
not just at compile time. However, the development environment uses caching
with cache invalidation to make variable references fast.

4.8 Command processor support

While it is possible to use the Scheme 48 static linker for program development,
it is far more convenient to use the development environment, which supports
rapid turnaround for program changes. The programmer interacts with the de-
velopment environment through a command processor. The command processor
is like the usual Lisp read-eval-print loop in that it accepts Scheme forms to eval-
uate. However, all meta-level operations, such as exiting the Scheme system or
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requests for trace output, are handled by commands, which are lexically distin-
guished from Scheme forms. This arrangement is borrowed from the Symbolics
Lisp Machine system, and is reminiscent of non-Lisp debuggers. Commands are
a little easier to type than Scheme forms (no parentheses, so you don’t have
to shift), but more importantly, making them distinct from Scheme forms en-
sures that programs’ namespaces aren’t cluttered with inappropriate bindings.
Equivalently, the command set is available for use regardless of what bindings
happen to be visible in the current program. This is especially important in
conjunction with the module system, which puts strict controls on visibility of
bindings.

The Scheme 48 command processor supports the module system with a va-
riety of special commands. For commands that require structure names, these
names are resolved in a designated configuration package that is distinct from
the current package for evaluating Scheme forms given to the command proces-
sor. The command processor interprets Scheme forms in a particular current
package, and there are commands that move the command processor between
different packages.

Commands are introduced by a comma (,) and end at the end of line.
The command processor’s prompt consists of the name of the current package
followed by a greater-than (>).

,open structure∗

The ,open command opens new structures in the current package, as if
the package’s definition’s open clause had listed structure. As with open

clauses the visible names can be modified, as in

,open (subset foo (bar baz))

which only makes the bar and baz bindings from structure foo visible.

,config

The ,config command sets the command processor’s current package to
be the current configuration package. Forms entered at this point are
interpreted as being configuration language forms, not Scheme forms.

,config command
This form of the ,config command executes another command in the
current configuration package. For example,

,config ,load foo.scm

interprets configuration language forms from the file foo.scm in the cur-
rent configuration package.

,config-package-is struct-name
The ,config-package-is command designates a new configuration pack-
age for use by the ,config command and resolution of struct-names for
other commands such as ,in and ,open. See section 4.9 for information
on making new configuration packages.
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,in struct-name
The ,in command moves the command processor to a specified structure’s
underlying package. For example:

user> ,config

config> (define-structure foo (export a)

(open scheme))

config> ,in foo

foo> (define a 13)

foo> a

13

In this example the command processor starts in a package called user,
but the ,config command moves it into the configuration package, which
has the name config. The define-structure form binds, in config, the
name foo to a structure that exports a. Finally, the command ,in foo

moves the command processor into structure foo’s underlying package.

A package’s body isn’t executed (evaluated) until the package is loaded,
which is accomplished by the ,load-package command.

,in struct-name command
This form of the ,in command executes a single command in the spec-
ified package without moving the command processor into that package.
Example:

,in mumble (cons 1 2)

,in mumble ,trace foo

,user [command]
This is similar to the ,config and ,in commands. It moves to or executes
a command in the user package (which is the default package when the
Scheme 48 command processor starts).

,user-package-is name
The ,user-package-is command designates a new user package for use
by the ,user command.

,load-package struct-name
The ,load-package command ensures that the specified structure’s un-
derlying package’s program has been loaded. This consists of (1) recur-
sively ensuring that the packages of any opened or accessed structures are
loaded, followed by (2) executing the package’s body as specified by its
definition’s begin and files forms.

,reload-package struct-name
This command re-executes the structure’s package’s program. It is most
useful if the program comes from a file or files, when it will update the
package’s bindings after mutations to its source file.
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,load filespec ...

The ,load command executes forms from the specified file or files in the
current package. ,load filespec is similar to (load "filespec") except that
the name load needn’t be bound in the current package to Scheme’s load
procedure.

,for-syntax [command]
This is similar to the ,config and ,in commands. It moves to or executes
a command in the current package’s “package for syntax,” which is the
package in which the forms f in (define-syntax name f ) are evaluated.

,new-package [struct-name ...]

The ,new-package command creates a new package and moves the com-
mand processor to it. With no arguments, only the standard Scheme
bindings are visible in the new package. Otherwise, the structures spec-
ified as command arguments (and not the scheme structure) are opened
in the new package.

,structure name interface
The ,structure command defines name in the configuration package to
be a structure with interface interface based on the current package.

4.9 Configuration packages

It is possible to set up multiple configuration packages. The default configura-
tion package opens the following structures:

• module-system, which exports define-structure and the other configu-
ration language keywords, as well as standard types and type constructors
(:syntax, :value, proc, etc.).

• built-in-structures, which exports structures that are built into the
initial Scheme 48 image; these include scheme, threads, tables, and
records.

• more-structures, which exports additional structures that are avail-
able in the development environment. A complete listing can be found
in the definition of more-structures-interface at the end of the file
scheme/packages.scm.

Note that it does not open scheme.
You can define additional configuration packages by making a package that

opens module-system and, optionally, built-in-structures, more-structures,
or other structures that export structures and interfaces.

For example:

> ,config (define-structure foo (export)

(open module-system
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built-in-structures

more-structures))

> ,in foo

foo> (define-structure x (export a b)

(open scheme)

(files x))

foo>

Unfortunately, the above example does not work. The problem is that every
environment in which define-structure is used must also have a way to create
“syntactic towers”. A new syntactic tower is required whenever a new environ-
ment is created for compiling the source code in the package associated with a
new structure. The environment’s tower is used at compile time for evaluating
the macro-source in

(define-syntax name macro-source)
(let-syntax ((name macro-source) ...) body)

and so forth. It is a “tower” because that environment, in turn, has to say what
environment to use if macro-source itself contains a use of let-syntax.

The simplest way to provide a tower maker is to pass on the one used by an
existing configuration package. The special form export-syntactic-tower-maker

creates an interface that exports a configuration package’s tower. The following
example uses export-syntactic-tower-maker and the ,structure command
to obtain a tower maker and create a new configuration environment.

> ,config ,structure t (export-syntactic-tower-maker)

> ,config (define-structure foo (export)

(open module-system

t

built-in-structures

more-structures))

Before Scheme 48 1.9, export-syntactic-tower-maker was named export-reflective-tower-maker;
this name is still supported for backwards compatibility.

4.10 Discussion

This module system was not designed as the be-all and end-all of Scheme mod-
ule systems; it was only intended to help us organize the Scheme 48 system.
Not only does the module system help avoid name clashes by keeping differ-
ent subsystems in different namespaces, it has also helped us to tighten up
and generalize Scheme 48’s internal interfaces. Scheme 48 is unusual among
Lisp implementations in admitting many different possible modes of operation.
Examples of such multiple modes include the following:

• Linking can be either static or dynamic.
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• The development environment (compiler, debugger, and command proces-
sor) can run either in the same address space as the program being devel-
oped or in a different address space. The environment and user program
may even run on different processors under different operating systems[8].

• The virtual machine can be supported by either of two implementations
of its implementation language, Prescheme.

The module system has been helpful in organizing these multiple modes. By
forcing us to write down interfaces and module dependencies, the module system
helps us to keep the system clean, or at least to keep us honest about how clean
or not it is.

The need to make structures and interfaces second-class instead of first-class
results from the requirements of static program analysis: it must be possible for
the compiler and linker to expand macros and resolve variable bindings before
the program is executed. Structures could be made first-class (as in FX[10]) if a
type system were added to Scheme and the definitions of exported macros were
defined in interfaces instead of in module bodies, but even in that case types
and interfaces would remain second-class.

The prohibition on assignment to imported bindings makes substitution a
valid optimization when a module is compiled as a block. The block compiler
first scans the entire module body, noting which variables are assigned. Those
that aren’t assigned (only defined) may be assumed never assigned, even if they
are exported. The optimizer can then perform a very simple-minded analysis to
determine automatically that some procedures can and should have their calls
compiled in line.

The programming style encouraged by the module system is consistent with
the unextended Scheme language. Because module system features do not gen-
erally show up within module bodies, an individual module may be understood
by someone who is not familiar with the module system. This is a great aid to
code presentation and portability. If a few simple conditions are met (no name
conflicts between packages, and use of files in preference to begin), then a
multi-module program can be loaded into a Scheme implementation that does
not support the module system. The Scheme 48 static linker satisfies these con-
ditions, and can therefore run in other Scheme implementations. Scheme 48’s
bootstrap process, which is based on the static linker, is therefore nonincestuous.
This contrasts with most other integrated programming environments, such as
Smalltalk-80, where the system can only be built using an existing version of
the system itself.

Like ML modules, but unlike Scheme Xerox modules, this module system
is compositional. That is, structures are constructed by single syntactic units
that compose existing structures with a body of code. In Scheme Xerox, the
set of modules that can contribute to an interface is open-ended — any module
can contribute bindings to any interface whose name is in scope. The module
system implementation is a cross-bar that channels definitions from modules to
interfaces. The module system described here has simpler semantics and makes
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dependencies easier to trace. It also allows for higher-order modules, which
Scheme Xerox considers unimportant.
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Chapter 5

Libraries

Use the ,open command (section 3.4) or the module language (chapter 2.6) to
open the structures described below.

5.1 General utilities

These are in the big-util structure.

• (atom? value) → boolean

(atom? x) is the same as (not (pair? x)).

• (null-list? list) → boolean

Returns true for the empty list, false for a pair, and signals an error otherwise.

• (neq? value value) → boolean

(neq? x y) is the same as (not (eq? x y)).

• (n= number number) → boolean

(n= x y) is the same as (not (= x y)).

• (identity value) → value
• (no-op value) → value

These both just return their argument. No-op is guaranteed not to be compiled
in-line, identity may be.

• (memq? value list) → boolean

Returns true if value is in list , false otherwise.

• (any? predicate list) → boolean

Returns true if predicate is true for any element of list .

• (every? predicate list) → boolean
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Returns true if predicate is true for every element of list .

• (any predicate list) → value
• (first predicate list) → value

Any returns some element of list for which predicate is true, or false if there are
none. First does the same except that it returns the first element for which
predicate is true.

• (filter predicate list) → list
• (filter! predicate list) → list

Returns a list containing all of the elements of list for which predicate is true.
The order of the elements is preserved. Filter! may reuse the storage of list .

• (filter-map procedure list) → list

The same as filter except the returned list contains the results of applying
procedure instead of elements of list . (filter-map p l) is the same as (filter
identity (map p l)).

• (partition-list predicate list) → list list
• (partition-list! predicate list) → list list

The first return value contains those elements list for which predicate is true, the
second contains the remaining elements. The order of the elements is preserved.
Partition-list! may reuse the storage of the list .

• (remove-duplicates list) → list

Returns its argument with all duplicate elements removed. The first instance
of each element is preserved.

• (delq value list) → list
• (delq! value list) → list
• (delete predicate list) → list

All three of these return list with some elements removed. Delq removes all
elements eq? to value. Delq! does the same and may modify the list argument.
Delete removes all elements for which predicate is true. Both delq and delete

may reuse some of the storage in the list argument, but won’t modify it.

• (reverse! list) → list

Destructively reverses list .

• (concatenate-symbol value . . .) → symbol

Returns the symbol whose name is produced by concatenating the displayed
representations of value . . . .

(concatenate-symbol ’abc "-" 4) =⇒ ’abc-4
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5.2 Pretty-printing

These are in the pp structure.

• (p value)
• (p value output-port)
• (pretty-print value output-port position)

Pretty-print value The current output port is used if no port is specified.
Position is the starting offset. Value will be pretty-printed to the right of
this column.

5.3 Bitwise integer operations

These functions use the two’s-complement representation for integers. There is
no limit to the number of bits in an integer. They are in the structures bitwise
and big-scheme.

• (bitwise-and integer integer . . .) → integer
• (bitwise-ior integer integer . . .) → integer
• (bitwise-xor integer integer . . .) → integer
• (bitwise-not integer) → integer

These perform various logical operations on integers on a bit-by-bit basis. ‘ior’
is inclusive OR and ‘xor’ is exclusive OR.

• (arithmetic-shift integer bit-count) → integer

Shifts the integer by the given bit count, which must be an integer, shifting left
for positive counts and right for negative ones. Shifting preserves the integer’s
sign.

• (bit-count integer) → integer

Counts the number of bits set in the integer. If the argument is negative a
bitwise NOT operation is performed before counting.

5.4 Byte vectors

These are homogeneous vectors of small integers (0 ≤ i ≤ 255). The func-
tions that operate on them are analogous to those for vectors. They are in the
structure byte-vectors.

• (byte-vector? value) → boolean
• (make-byte-vector k fill) → byte-vector
• (byte-vector b . . .) → byte-vector
• (byte-vector-length byte-vector) → integer
• (byte-vector-ref byte-vector k) → integer
• (byte-vector-set! byte-vector k b)
• (byte-vector=? byte-vector byte-vector) → boolean
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5.5 Sparse vectors

These are vectors that grow as large as they need to. That is, they can be
indexed by arbitrarily large nonnegative integers. The implementation allows
for arbitrarily large gaps by arranging the entries in a tree. They are in the
structure sparse-vectors.

• (make-sparse-vector) → sparse-vector
• (sparse-vector-ref sparse-vector k) → value
• (sparse-vector-set! sparse-vector k value)
• (sparse-vector->list sparse-vector) → list

Make-sparse-vector, sparse-vector-ref, and sparse-vector-set! are anal-
ogous to make-vector, vector-ref, and vector-set!, except that the in-
dices passed to sparse-vector-ref and sparse-vector-set! can be arbi-
trarily large. For indices whose elements have not been set in a sparse vector,
sparse-vector-ref returns #f.

Sparse-vector->list is for debugging: It returns a list of the consecutive
elements in a sparse vector from 0 to the highest element that has been set.
Note that the list will also include all the #f elements for the unset elements.

5.6 Cells

These hold a single value and are useful when a simple indirection is required.
The system uses these to hold the values of lexical variables that may be set!.

• (cell? value) → boolean
• (make-cell value) → cell
• (cell-ref cell) → value
• (cell-set! cell value)

5.7 Queues

These are ordinary first-in, first-out queues. The procedures are in structure
queues.

• (make-queue) → queue
• (queue? value) → boolean
• (queue-empty? queue) → boolean
• (list->queue values) → queue
• (enqueue! queue value)
• (enqueue-many! queue list)
• (queue-head-or-value queue value) → value
• (queue-head-or-thunk queue thunk) → value
• (queue-head queue) → value
• (maybe-queue-head queue) → value
• (dequeue-or-value! queue value) → value
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• (dequeue-or-thunk! queue thunk) → value
• (dequeue! queue) → value
• (maybe-dequeue! queue) → value
• (empty-queue! queue)

Make-queue creates an empty queue, queue? is a predicate for identifying
queues, and queue-empty? tells you if a queue is empty. List->queue returns a
queue containing values, preserving their order. Enqueue! adds one value to the
queue; enqueue-many! adds a list of values to the queue. Queue-head-or-value,
queue-head-or-thunk, queue-head, and maybe-queue-head return the first
value in queue if it is not empty; if the queue is empty, queue-head-or-value re-
turns value, queue-head-or-thunk tail-calls thunk , queue-head raises an error,
and maybe-queue-head returns #f. Dequeue-or-value!, dequeue-or-thunk!,
dequeue!, and maybe-dequeue! remove a value from the queue if one is avail-
able; if the queue is empty, dequeue-or-value! returns value, dequeue-or-thunk!
tail-calls thunk , dequeue! raises an error, and maybe-dequeue! returns #f.
Empty-queue! removes all values from queue.

(Dequeue-or-value! q value) is more efficient than, but otherwise equiv-
alent to:

(ensure-atomicity

(if (queue-empty? q)

value

(dequeue! q)))

Because queue-head and dequeue! raise exceptions if they are called on
an empty queue, they must not be called with a proposal already active unless
queue-empty? has returned #f with the same proposal active.

The following procedures are not used in the Scheme 48 system, and are very
slow. These operations may be removed from the queues structure in a future
revision.

• (queue-length queue) → integer
• (queue->list queue) → values
• (delete-from-queue! queue value) → boolean
• (on-queue? queue value) → boolean

Queue-length returns the number of values in queue. Queue->list returns
the values in queue as a list, in the order in which the values were added.
Delete-from-queue! removes the first instance of value from queue, using eqv?

for comparisons. Delete-from-queue! returns #t if it removes an element and
#f if it does not. On-queue? returns #t if value is in the queue (using eqv? for
comparisons) and #f if it is not.

5.8 Arrays

These provide N-dimensional, zero-based arrays and are in the structure arrays.
The array interface is derived from one invented by Alan Bawden.
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• (make-array value dimension0 . . .) → array
• (array dimensions element0 . . .) → array
• (copy-array array) → array

Make-array makes a new array with the given dimensions, each of which must
be a non-negative integer. Every element is initially set to value. Array Returns
a new array with the given dimensions and elements. Dimensions must be a list
of positive integers, The number of elements should be the equal to the product
of the dimensions. The elements are stored in row-major order.

(make-array ’a 2 3) → {Array 2 3}

(array ’(2 3) ’a ’b ’c ’d ’e ’f)

→ {Array 2 3}

Copy-array returns a copy of array . The copy is identical to the array but
does not share storage with it.

• (array? value) → boolean

Returns #t if value is an array.

• (array-ref array index0 . . .) → value
• (array-set! array value index0 . . .)
• (array->vector array) → vector
• (array-shape array) → list

Array-ref returns the specified array element and array-set! replaces the
element with value.

(let ((a (array ’(2 3) ’a ’b ’c ’d ’e ’f)))

(let ((x (array-ref a 0 1)))

(array-set! a ’g 0 1)

(list x (array-ref a 0 1))))

→ ’(b g)

Array->vector returns a vector containing the elements of array in row-
major order. Array-shape returns the dimensions of the array as a list.

• (make-shared-array array linear-map dimension0 . . .) → array

Make-shared-array makes a new array that shares storage with array and
uses linear-map to map indexes to elements. Linear-map must accept as many
arguments as the number of dimensions given and must return a list of non-
negative integers that are valid indexes into array .

(array-ref (make-shared-array a f i0 i1 ...)

j0 j1 ...)

is equivalent to

(apply array-ref a (f j0 j1 ...))
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As an example, the following function makes the transpose of a two-dimensional
array:

(define (transpose array)

(let ((shape (array-shape array)))

(make-shared-array array

(lambda (x y)

(list y x))

(cadr shape)

(car shape))))

(array->vector

(transpose

(array ’(2 3) ’a ’b ’c ’d ’e ’f)))

→ ’(a d b e c f)

5.9 Records

New types can be constructed using the define-record-type macro from the
define-record-types structure The general syntax is:

(define-record-type [tag] type-name
(constructor-name field-tag ...)

predicate-name
(field-tag accessor-name [modifier-name])
...)

This makes the following definitions:

• type-name type
• (constructor-name field-init . . .) → type-name
• (predicate-name value) → boolean
• (accessor-name type-name) → value
• (modifier-name type-name value)

Type-name is the record type itself, and can be used to specify a print method
(see below). Constructor-name is a constructor that accepts values for the
fields whose tags are specified. Predicate-name is a predicate that returns #t for
elements of the type and #f for everything else. The accessor-names retrieve the
values of fields, and the modifier-name’s update them. Tag is used in printing
instances of the record type and the field-tags are used in the inspector and to
match constructor arguments with fields. If tag is not specified, type-name is
used instead.

• (define-record-discloser type discloser)

Define-record-discloser determines how records of type type are printed.
Discloser should be procedure which takes a single record of type type and
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returns a list whose car is a symbol. The record will be printed as the value
returned by discloser with curly braces used instead of the usual parenthesis.

For example

(define-record-type pare :pare

(kons x y)

pare?

(x kar set-kar!)

(y kdr))

defines kons to be a constructor, kar and kdr to be accessors, set-kar! to be
a modifier, and pare? to be a predicate for a new type of object. The type
itself is named :pare. Pare is a tag used in printing the new objects.

By default, the new objects print as #{Pare}. The print method can be
modified using define-record-discloser:

(define-record-discloser :pare

(lambda (p) ‘(pare ,(kar p) ,(kdr p))))

will cause the result of (kons 1 2) to print as #{Pare 1 2}.
Define-record-resumer (section 8.7.6) can be used to control how records

are stored in heap images.

5.9.1 Low-level access to records

Records are implemented using primitive objects exactly analogous to vectors.
Every record has a record type (which is another record) in the first slot. Note
that use of these procedures, especially record-set!, breaks the record abstrac-
tion described above; caution is advised.

These procedures are in the structure records.

• (make-record n value) → record
• (record value . . .) → record-vector
• (record? value) → boolean
• (record-length record) → integer
• (record-type record) → value
• (record-ref record i) → value
• (record-set! record i value)

These the same as the standard vector- procedures except that they operate
on records. The value returned by record-length includes the slot holding the
record’s type. (record-type x) is equivalent to (record-ref x 0).

5.9.2 Record types

Record types are themselves records of a particular type (the first slot of :record-type
points to itself). A record type contains four values: the name of the record
type, a list of the names its fields, and procedures for disclosing and resuming
records of that type. Procedures for manipulating them are in the structure
record-types.
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• (make-record-type name field-names) → record-type
• (record-type? value) → boolean
• (record-type-name record-type) → symbol
• (record-type-field-names record-type) → symbols

• (record-constructor record-type field-names) → procedure
• (record-predicate record-type) → procedure
• (record-accessor record-type field-name) → procedure
• (record-modifier record-type field-name) → procedure

These procedures construct the usual record-manipulating procedures. Record-constructor
returns a constructor that is passed the initial values for the fields specified and
returns a new record. Record-predicate returns a predicate that return true
when passed a record of type record-type and false otherwise. Record-accessor
and record-modifier return procedures that reference and set the given field
in records of the appropriate type.

• (define-record-discloser record-type discloser)
• (define-record-resumer record-type resumer)

Record-types is the initial exporter of define-record-discloser (re-exported
by define-record-types described above) and define-record-resumer (re-
exported by external-calls (section 8.7.6)).

The procedures described in this section can be used to define new record-
type-defining macros.

(define-record-type pare :pare

(kons x y)

pare?

(x kar set-kar!)

(y kdr))

is (semantically) equivalent to

(define :pare (make-record-type ’pare ’(x y)))

(define kons (record-constructor :pare ’(x y)))

(define kar (record-accessor :pare ’x))

(define set-kar! (record-modifier :pare ’x))

(define kdr (record-accessor :pare ’y))

The “(semantically)” above is because define-record-type adds declara-
tions, which allows the type checker to detect some misuses of records, and uses
more efficient definitions for the constructor, accessors, and modifiers. Ignoring
the declarations, which will have to wait for another edition of the manual, what
the above example actually expands into is:

(define :pare (make-record-type ’pare ’(x y)))

(define (kons x y) (record :pare x y))

(define (kar r) (checked-record-ref r :pare 1))
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(define (set-kar! r new)

(checked-record-set! r :pare 1 new))

(define (kdr r) (checked-record-ref r :pare 2))

Checked-record-ref and Checked-record-set! are low-level procedures that
check the type of the record and access or modify it using a single VM instruc-
tion.

5.10 Finite record types

The structure finite-types has two macros for defining ‘finite’ record types.
These are record types for which there are a fixed number of instances, all of
which are created at the same time as the record type itself. The syntax for
defining an enumerated type is:

(define-enumerated-type tag type-name
predicate-name
vector-of-instances-name
name-accessor
index-accessor
(instance-name ...))

This defines a new record type, bound to type-name, with as many instances
as there are instance-name’s. Vector-of-instances-name is bound to a vector
containing the instances of the type in the same order as the instance-name
list. Tag is bound to a macro that when given an instance-name expands
into an expression that returns corresponding instance. The name lookup is
done at macro expansion time. Predicate-name is a predicate for the new type.
Name-accessor and index-accessor are accessors for the name and index (in
vector-of-instances) of instances of the type.

(define-enumerated-type color :color

color?

colors

color-name

color-index

(black white purple maroon))

(color-name (vector-ref colors 0)) → black

(color-name (color white)) → white

(color-index (color purple)) → 2

Finite types are enumerations that allow the user to add additional fields in
the type. The syntax for defining a finite type is:

(define-finite-type tag type-name
(field-tag ...)
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predicate-name
vector-of-instances-name
name-accessor
index-accessor
(field-tag accessor-name [modifier-name])
...

((instance-name field-value ...)

...))

The additional fields are specified exactly as with define-record-type. The
field arguments to the constructor are listed after the type-name; these do not
include the name and index fields. The form ends with the names and the
initial field values for the instances of the type. The instances are constructed by
applying the (unnamed) constructor to these initial field values. The name must
be first and the remaining values must match the field-tags in the constructor’s
argument list.

(define-finite-type color :color

(red green blue)

color?

colors

color-name

color-index

(red color-red)

(green color-green)

(blue color-blue)

((black 0 0 0)

(white 255 255 255)

(purple 160 32 240)

(maroon 176 48 96)))

(color-name (color black)) → black

(color-name (vector-ref colors 1)) → white

(color-index (color purple)) → 2

(color-red (color maroon)) → 176

5.11 Sets over finite types

The structure enum-sets has a macro for defining types for sets of elements
of finite types. These work naturally with the finite types defined by the
finite-types structure, but are not tied to them. The syntax for defining
such a type is:

(define-enum-set-type id type-name predicate constructor
element-syntax element-predicate all-elements element-index-ref )

48



This defines id to be syntax for constructing sets, type-name to be a value
representing the type, predicate to be a predicate for those sets, and constructor
a procedure for constructing one from a list.

Element-syntax must be the name of a macro for constructing set elements
from names (akin to the tag argument to define-enumerated-type). Element-
predicate must be a predicate for the element type, all-elements a vector of all
values of the element type, and element-index-ref must return the index of an
element within the all-elements vector.

• (enum-set->list enum-set) → list
• (enum-set-member? enum-set enumerand) → boolean
• (enum-set=? enum-set enum-set) → boolean
• (enum-set-subset? enum-set enum-set) → boolean
• (enum-set-union enum-set enum-set) → enum-set
• (enum-set-intersection enum-set enum-set) → enum-set
• (enum-set-difference enum-set enum-set) → enum-set
• (enum-set-negation enum-set) → enum-set

Enum-set->list converts a set into a list of its elements. Enum-set-member?

tests for membership. Enum-set=? tests two sets of equal type for equal-
ity. (If its arguments are not of the same type, enum-set=? raises an ex-
ception.) Enum-set-subset? tests, for two sets of equal type, if the first
set is a subset of the second one. Enum-set-union computes the union of
two sets of equal type, enum-set-intersection computes the intersection,
enum-set-difference computes the intersection, and enum-set-negation com-
putes the complement of a set.

Here is an example. Given an enumerated type:

(define-enumerated-type color :color

color?

colors

color-name

color-index

(red blue green))

we can define sets of colors:

(define-enum-set-type color-set :color-set

color-set?

make-color-set

color color? colors color-index)

> (enum-set->list (color-set red blue))

(#{Color red} #{Color blue})

> (enum-set->list (enum-set-negation (color-set red blue)))

(#{Color green})

> (enum-set-member? (color-set red blue) (color blue))

#t
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5.12 Hash tables

These are generic hash tables, and are in the structure tables. Strictly speaking
they are more maps than tables, as every table has a value for every possible
key (for that type of table). All but a finite number of those values are #f.

• (make-table) → table
• (make-symbol-table) → symbol-table
• (make-string-table) → string-table
• (make-integer-table) → integer-table
• (make-table-maker compare-proc hash-proc) → procedure
• (make-table-immutable! table)

The first four functions listed make various kinds of tables. Make-table re-
turns a table whose keys may be symbols, integer, characters, booleans, or the
empty list (these are also the values that may be used in case expressions). As
with case, comparison is done using eqv?. The comparison procedures used in
symbol, string, and integer tables are eq?, string=?, and =.

Make-table-maker takes two procedures as arguments and returns a nullary
table-making procedure. Compare-proc should be a two-argument equality pred-
icate. Hash-proc should be a one argument procedure that takes a key and
returns a non-negative integer hash value. If (compare-proc x y) returns true,
then (= (hash-proc x) (hash-proc y)) must also return true. For example,
make-integer-table could be defined as (make-table-maker = abs).

Make-table-immutable! prohibits future modification to its argument.

• (table? value) → boolean
• (table-ref table key) → value or #f

• (table-set! table key value)
• (table-walk procedure table)
• (table->entry-list table) → list of pairs

Table? is the predicate for tables. Table-ref and table-set! access and
modify the value of key in table. Table-walk applies procedure, which must
accept two arguments, to every associated key and non-#f value in table.
Table->entry-list returns a list with the values of the table.

• (default-hash-function value) → integer
• (string-hash string) → integer
• (symbol-hash symbol) → integer

Default-hash-function is the hash function used in the tables returned by
make-table, string-hash is the one used by make-string-table, and symbol-hash

is the one used by make-symbol-table.

5.13 Port extensions

These procedures are in structure extended-ports.
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• (make-string-input-port string) → input-port
• (make-string-output-port) → output-port
• (string-output-port-output string-output-port) → string

Make-string-input-port returns an input port that that reads characters from
the supplied string. An end-of-file object is returned if the user reads past
the end of the string. Make-string-output-port returns an output port that
saves the characters written to it. These are then returned as a string by
string-output-port-output.

(read (make-string-input-port "(a b)"))

→ ’(a b)

(let ((p (make-string-output-port)))

(write ’(a b) p)

(let ((s (string-output-port-output p)))

(display "c" p)

(list s (string-output-port-output p))))

→ ’("(a b)" "(a b)c")

• (limit-output output-port n procedure)

Procedure is called on an output port. Output written to that port is copied to
output-port until n characters have been written, at which point limit-output
returns. If procedure returns before writing n characters, then limit-output

also returns at that time, regardless of how many characters have been written.

• (make-tracking-input-port input-port) → input-port
• (make-tracking-output-port output-port) → output-port
• (current-row port) → integer or #f

• (current-column port) → integer or #f

• (fresh-line output-port)

Make-tracking-input-port and make-tracking-output-port return ports that
keep track of the current row and column and are otherwise identical to their ar-
guments. Closing a tracking port does not close the underlying port. Current-row
and current-column return port ’s current read or write location. They return
#f if port does not keep track of its location. Fresh-line writes a newline
character to output-port if (current-row port) is not 0.

(define p (make-tracking-output-port (open-output-file "/tmp/temp")))

(list (current-row p) (current-column p))

→ ’(0 0)

(display "012" p)

(list (current-row p) (current-column p))

→ ’(0 3)

(fresh-line p)

(list (current-row p) (current-column p))

→ ’(1 0)
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(fresh-line p)

(list (current-row p) (current-column p))

→ ’(1 0)

5.14 Fluid bindings

These procedures implement dynamic binding and are in structure fluids. A
fluid is a cell whose value can be bound dynamically. Each fluid has a top-level
value that is used when the fluid is unbound in the current dynamic environment.

• (make-fluid value) → fluid
• (fluid fluid) → value
• (let-fluid fluid value thunk) → value(s)
• (let-fluids fluid0 value0 fluid1 value1 . . . thunk) → value(s)

Make-fluid returns a new fluid with value as its initial top-level value. Fluid

returns fluid’s current value. Let-fluid calls thunk, with fluid bound to
value until thunk returns. Using a continuation to throw out of the call to
thunk causes fluid to revert to its original value, while throwing back in causes
fluid to be rebound to value. Let-fluid returns the value(s) returned by thunk .
Let-fluids is identical to let-fluid except that it binds an arbitrary number
of fluids to new values.

(let* ((f (make-fluid ’a))

(v0 (fluid f))

(v1 (let-fluid f ’b

(lambda ()

(fluid f))))

(v2 (fluid f)))

(list v0 v1 v2))

→ ’(a b a)

(let ((f (make-fluid ’a))

(path ’())

(c #f))

(let ((add (lambda ()

(set! path (cons (fluid f) path)))))

(add)

(let-fluid f ’b

(lambda ()

(call-with-current-continuation

(lambda (c0)

(set! c c0)))

(add)))

(add)

(if (< (length path) 5)

(c)
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(reverse path))))

→ ’(a b a b a)

5.15 OS strings

On common operating systems such as Unix and Windows, various parameters
to OS functionality—such as file names, user names, command-line arguments
etc.—appear as text in most contexts, but are really byte sequences: On Unix,
the byte sequence may be interpreted as text through some locale-determined
encoding. On Windows, such parameters are typically represented as sequences
of UTF-16 code units. In both cases, not every such byte sequence has a string
equivalent: On Unix, a byte sequence encoding a file name using Latin-1 often
cannot be decoded using UTF-8. On Windows, unpaired UTF-16 surrogates
are admissible in encodings, and no lossless text decoding for them exists.

For representing such string-like parameters, Scheme 48 uses an abstraction
called OS strings. An OS string is created from either a string or a NUL-
terminated byte sequence stored in a byte vector, and has an associated text
codec (see section 6.6.1) that is able to convert from one representation to the
other. The exact meaning of a NUL-terminated byte sequence is dependent
on this text codec. However, only codecs for encodings that are a conservative
extension of ASCII (such as ASCII itself, Latin-1, or UTF-8) should be used
here, to allow a minimal set of portable file names. (The Windows port uses a
special synthetic encoding called UTF-8of16 compatible with UTF-8 but capable
of encoding even invalid UTF-16 internally, but uses the UTF-8 codec at the
Scheme level.)

Most procedures accepting OS strings also accept strings or byte vectors,
which are then used to construct a OS string. In the headers of the specifications
of these procedures, such arguments occur as os-string-thing . The standard
Scheme procedures such as open-input-file that take file names all accept
os-string-thing arguments. OS strings are in the os-strings structure.

• (os-string? value) → boolean
• (make-os-string text-codec string/byte-vector) → os-string

The os-string? predicate returns #t if its argument is an OS string, #f oth-
erwise.

The make-os-string procedure creates an OS string from a text codec and
a byte vector or string that defines its contents. If the argument is a byte vector,
it does not matter if it is NUL-terminated or not.

• (string->os-string string) → os-string
• (byte-vector->os-string byte-vector) → os-string
• (x->os-string os-string-thing) → os-string

These procedures create an OS string from a string, a byte-vector (whose last
value should be 0), and an os-string-thing argument, respectively, always using
the standard OS-string text codec (see below).
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• (os-string->byte-vector os-string) → byte-vector
• (os-string->string os-string) → string

These procedures yield the contents of an OS string. For an OS string created
from a string, os-string->string will return a string with the same contents;
for an OS string created from a byte vector, os-string->byte-vector will
return a byte vector with the same contents. For the other cases, data loss as
determined by the text codec is possible.

• (os-string-text-codec os-string) → text-codec

This procedure returns the text codec of the OS string.

• (os-string=? os-string os-string) → boolean

This procedure returns #t if its arguments denote the same byte sequence, #f
otherwise.

• (x->os-byte-vector os-string-thing) → byte-vector
• (string->os-byte-vector string) → byte-vector

These are convenience procedures: The first is the composition of x->os-string
and os-string->byte-vector, and the second is the composition of string->os-string
and os-string->byte-vector.

• (current-os-string-text-codec) → text-codec
• (call-with-os-string-text-codec text-codec thunk) → value(s)

The current-os-string-text-codec returns the current text codec used for
creating new OS strings. The initial default is determined by the operating
system. (On Unix, this is the text codec determined by the locale. On Windows,
this is UTF-8.) The call-with-os-string-text-codec procedure dynamically
binds the current text codec to text-codec during the invocation of thunk .

5.16 Shell commands

Structure c-system-function provides access to the C system() function.

• (have-system?) → boolean
• (system os-string-thing) → integer

Have-system? returns true if the underlying C implementation has a command
processor. (System string) passes string to the C system() function and re-
turns the result.

(begin

(system "echo foo > test-file")

(call-with-input-file "test-file" read))

→ ’foo
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5.17 Sockets

Structure sockets provides access to TCP/IP sockets for interprocess and net-
work communication.

• (open-socket) → socket
• (open-socket port-number) → socket
• (socket-port-number socket) → integer
• (close-socket socket)
• (socket-accept socket) → input-port output-port
• (get-host-name) → string

Open-socket creates a new socket. If no port-number is supplied the system
picks one at random. Socket-port-number returns a socket’s port number.
Close-socket closes a socket, preventing any further connections. Socket-accept
accepts a single connection on socket , returning an input port and an output
port for communicating with the client. If no client is waiting socket-accept

blocks until one appears. Get-host-name returns the network name of the ma-
chine.

• (socket-client host-name port-number) → input-port output-port

Socket-client connects to the server at port-number on the machine named
host-name. Socket-client blocks until the server accepts the connection.

The following simple example shows a server and client for a centralized UID
service.

(define (id-server)

(let ((socket (open-socket)))

(display "Waiting on port ")

(display (socket-port-number socket))

(newline)

(let loop ((next-id 0))

(call-with-values

(lambda ()

(socket-accept socket))

(lambda (in out)

(display next-id out)

(close-input-port in)

(close-output-port out)

(loop (+ next-id 1)))))))

(define (get-id machine port-number)

(call-with-values

(lambda ()

(socket-client machine port-number))

(lambda (in out)

(let ((id (read in)))

(close-input-port in)
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(close-output-port out)

id))))

5.18 Profiling

The profiler can be used programmatically from within the code and its results
can be processed dynamically.

The structure profiler offers basic data structures and functions. All
functions need a profile-data record argument that can be created with
make-empty-profile-data.

• (make-empty-profile-data) → profile-data
• (profile-thunk profile-data thunk [interrupt-time [with-non-instr?]]) → value

profile-thunk executes a thunk under the profiler. The data is stored in the
profile-data record passed as argument. Optionally the timeout for the profiler
interrupt can be passed (in milliseconds). The return value of profile-thunk is
the return value of thunk. By default, non-instrumented code will be profiled by
the sampling process. By passing with-non-instr? = #f only instrumented
functions will be profiled.

After profiling data, can be retrieved with the following accessors:

• (profile-data-starttime profile-data) → number
• (profile-data-endtime profile-data) → number
• (profile-data-runtime profile-data) → number
• (profile-data-memoryuse profile-data) → number
• (profile-data-gcruns profile-data) → number
• (profile-data-samples profile-data) → number
• (profile-data-interrupttime profile-data) → number

Times are in milliseconds, memory usage in bytes.
The following functions produce the same output as the ,profile command

(see section 3.6). They all take an optional port argument. Default is the
current-output-port.

• (profile-display profile-data [port])
• (profile-display-overview profile-data [port])
• (profile-display-flat profile-data [port])
• (profile-display-tree profile-data [port])

profile-display prints the full output of the profiler. The other profile-display-...
functions only display the respective part of the output.

The single fields in the flat profile can be retrieved with the following acces-
sors:

• (profile-function-calls profile-data names)
• (profile-function-reccalls profile-data names)
• (profile-function-nonreccalls profile-data names)
• (profile-function-occurs profile-data names)

56



• (profile-function-hist profile-data names)
• (profile-function-memoryuse profile-data names)
• (profile-function-timeshare profile-data names)
• (profile-function-time-cumulative profile-data names)
• (profile-function-time-self profile-data names)

Here names is the list of names specifying the function, optionally with it’s
module. For example, names = ("dynamic-wind", "wind") would specify the
dynamic-wind function in the module wind, if it was seen while profiling. If
two or more functions match, the first one is used. If no function matches, the
functions return #{Unspecific}.

The argument names can also be a plain string, as in (profile-display-function-flat

prof-data "module"). This will display all flat function profiles that have
“module” either as name or module.

The meanings of the fields that the functions return are as follows:

• calls: total number of calls (recursive and non-recursive) to the function

• reccalls: total number of recursive calls to the function

• nonreccalls: total number of non-recursive calls to the function

• occurs: number of times the function was seen on stack while profiling

• hist: number of times the function was seen running while profiling

• memoryuse: bytes of memory used by the function

• timeshare: percentage of time used by the function itself (number from
0 to 1)

• time-cumulative: total time in ms the function was on call-stack

• time-self: total time in ms the function actively running

The following shows a short example of the usage of the profiler interface,
where main is the function to be profiled:

(define prof-data (make-empty-profile-data))

(profile-thunk prof-data (lambda () (main 22)))

(display "Samples: ")

(display (profile-data-samples prof-data))

(newline)

(profile-display-overview prof-data)

(profile-display-flat prof-data (current-output-port))

(profile-display-tree prof-data)

; print only function "a"
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(profile-display-function-flat prof-data ’("a"))

; print only function "a" in file "x.scm"

(profile-display-function-flat prof-data ’("a" "x.scm"))

; print all profiled functions in file "x.scm"

(profile-display-function-flat prof-data "x.scm")

; print percentage of time "a" was running

(display (* (profile-function-timeshare prof-data ’("a")) 100))

5.19 Macros for writing loops

Iterate and reduce are extensions of named-let for writing loops that walk
down one or more sequences, such as the elements of a list or vector, the char-
acters read from a port, or an arithmetic series. Additional sequences can be
defined by the user. Iterate and reduce are in structure reduce.

5.19.1 Iterate

The syntax of iterate is:

(iterate loop-name
((sequence-type element-variable sequence-data ...)

...)

((state-variable initial-value)
...)

body-expression
[final-expression])

Iterate steps the element-variables in parallel through the sequences, while
each state-variable has the corresponding initial-value for the first iteration and
have later values supplied by body-expression. If any sequence has reached its
limit the value of the iterate expression is the value of final-expression, if
present, or the current values of the state-variables, returned as multiple values.
If no sequence has reached its limit, body-expression is evaluated and either
calls loop-name with new values for the state-variables, or returns some other
value(s).

The loop-name and the state-variables and initial-values behave exactly as
in named-let. The named-let expression

(let loop-name ((state-variable initial-value) ...)

body ...)

is equivalent to an iterate expression with no sequences (and with an explicit
let wrapped around the body expressions to take care of any internal defines):

58



(iterate loop-name

()

((state-variable initial-value) ...)

(let () body ...))

The sequence-types are keywords (they are actually macros of a particular
form; it is easy to add additional types of sequences). Examples are list*

which walks down the elements of a list and vector* which does the same for
vectors. For each iteration, each element-variable is bound to the next element
of the sequence. The sequence-data gives the actual list or vector or whatever.

If there is a final-expression, it is evaluated when the end of one or more
sequences is reached. If the body-expression does not call loop-name the final-
expression is not evaluated. The state-variables are visible in final-expression
but the sequence-variables are not.

The body-expression and the final-expression are in tail-position within the
iterate. Unlike named-let, the behavior of a non-tail-recursive call to loop-
name is unspecified (because iterating down a sequence may involve side effects,
such as reading characters from a port).

5.19.2 Reduce

If an iterate expression is not meant to terminate before a sequence has reached
its end, body-expression will always end with a tail call to loop-name. Reduce

is a macro that makes this common case explicit. The syntax of reduce is the
same as that of iterate, except that there is no loop-name. The body-expression
returns new values of the state-variables instead of passing them to loop-name.
Thus body-expression must return as many values as there are state variables.
By special dispensation, if there are no state variables then body-expression may
return any number of values, all of which are ignored.

The syntax of reduce is:

(reduce ((sequence-type element-variable sequence-data ...)

...)

((state-variable initial-value)
...)

body-expression
[final-expression])

The value(s) returned by an instance of reduce is the value(s) returned by
the final-expression, if present, or the current value(s) of the state variables
when the end of one or more sequences is reached.

A reduce expression can be rewritten as an equivalent iterate expression
by adding a loop-var and a wrapper for the body-expression that calls the loop-
var .

(iterate loop

((sequence-type element-variable sequence-data ...)
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...)

((state-variable initial-value)
...)

(call-with-values (lambda ()

body-expression)
loop)

[final-expression])

5.19.3 Sequence types

The predefined sequence types are:

• (list* elt-var list) syntax
• (list-spine* elt-var list) syntax
• (list-spine-cycle-safe* elt-var list on-cycle-thunk) syntax
• (vector* elt-var vector) syntax
• (string* elt-var string) syntax
• (count* elt-var start [end [step]]) syntax
• (bits* elt-var i [size]) syntax
• (input* elt-var input-port read-procedure) syntax
• (stream* elt-var procedure initial-data) syntax

For lists, vectors, and strings the element variable is bound to the successive
elements of the list or vector, or the characters in the string.

For list-spine* the element variable is bound to the successive pairs in
the spine of the list. List-spine-cycle-safe* is similar, but calls on-cycle-
thunk with no arguments and with the continuation of the loop macro at an
unspecified time if list contains a cycle.

For count* the element variable is bound to the elements of the sequence

start, start + step, start + 2step, ..., end

inclusive of start and exclusive of end . The default step is 1. The sequence
does not terminate if no end is given or if there is no N > 0 such that end =
start + Nstep (= is used to test for termination). For example, (count* i 0

-1) doesn’t terminate because it begins past the end value and (count* i 0

1 2) doesn’t terminate because it skips over the end value.

For bits*, the element variable is bound to a sequence of representations of
successive bit-fields of i , from least to most significant. If size is present, it must
be a positive exact integer, and the element variable is bound to a sequence of
size-bit integers. If size is omitted, bits* iterates through single bits, and the
element variable is bound to a sequence of booleans. #t represents 1, and #f

represents 0.

For input* the elements are the results of successive applications of read-
procedure to input-port . The sequence ends when read-procedure returns an
end-of-file object.
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For a stream, the procedure takes the current data value as an argument and
returns two values, the next value of the sequence and a new data value. If the
new data is #f then the previous element was the last one. For example,

(list* elt my-list)

is the same as

(stream* elt list->stream my-list)

where list->stream is

(lambda (list)

(if (null? list)

(values ’ignored #f)

(values (car list) (cdr list))))

5.19.4 Synchronous sequences

When using the sequence types described above, a loop terminates when any of
its sequences reaches its end. To help detect bugs it is useful to have sequence
types that check to see if two or more sequences end on the same iteration. For
this purpose there is second set of sequence types called synchronous sequences.
These are identical to the ones listed above except that they cause an error to
be signalled if a loop is terminated by a synchronous sequence and some other
synchronous sequence did not reach its end on the same iteration.

Sequences are checked for termination in order, from left to right, and if a
loop is terminated by a non-synchronous sequence no further checking is done.

The synchronous sequences are:

• (list% elt-var list) syntax
• (list-spine% elt-var list) syntax
• (list-spine-cycle-safe% elt-var list on-cycle-thunk) syntax
• (vector% elt-var vector) syntax
• (string% elt-var string) syntax
• (count% elt-var start end [step]) syntax
• (input% elt-var input-port read-procedure) syntax
• (stream% elt-var procedure initial-data) syntax

Note that the synchronous count% must have an end , unlike the nonsyn-
chronous count*.

5.19.5 Examples

Gathering the indexes of list elements that answer true to some predicate.

(lambda (my-list predicate)

(reduce ((list* elt my-list)

(count* i 0))
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((hits ’()))

(if (predicate elt)

(cons i hits)

hits)

(reverse hits))

Looking for the index of an element of a list.

(lambda (my-list predicate)

(iterate loop

((list* elt my-list)

(count* i 0))

() ; no state

(if (predicate elt)

i

(loop))))

Reading one line.

(define (read-line port)

(iterate loop

((input* c port read-char))

((chars ’()))

(if (char=? c #\newline)

(list->string (reverse chars))

(loop (cons c chars)))

(if (null? chars)

(eof-object)

; no newline at end of file

(list->string (reverse chars)))))

Counting the lines in a file. We can’t use count* because we need the value of
the count after the loop has finished.

(define (line-count name)

(call-with-input-file name

(lambda (in)

(reduce ((input* l in read-line))

((i 0))

(+ i 1)))))

5.19.6 Defining sequence types

The sequence types are object-oriented macros similar to enumerations. A non-
synchronous sequence macro needs to supply three values: #f to indicate that it
isn’t synchronous, a list of state variables and their initializers, and the code for
one iteration. The first two methods are CPS’ed: they take another macro and
argument to which to pass their result. The sync method gets no additional
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arguments. The state-vars method is passed a list of names which will be
bound to the arguments to the sequence. The final method, for the step, is
passed the list of names bound to the arguments and the list of state variables.
In addition there is a variable to be bound to the next element of the sequence,
the body expression for the loop, and an expression for terminating the loop.

The definition of list* is

(define-syntax list*

(syntax-rules (sync state-vars step)

((list* sync (next more))

(next #f more))

((list* state-vars (start-list) (next more))

(next ((list-var start-list)) more))

((list* step (start-list) (list-var)

value-var loop-body final-exp)

(if (null? list-var)

final-exp

(let ((value-var (car list-var))

(list-var (cdr list-var)))

loop-body)))))

Synchronized sequences are the same, except that they need to provide a
termination test to be used when some other synchronized method terminates
the loop.

(define-syntax list%

(syntax-rules (sync done)

((list% sync (next more))

(next #t more))

((list% done (start-list) (list-var))

(null? list-var))

((list% stuff ...)

(list* stuff ...))))

5.19.7 Expanded code

The expansion of

(reduce ((list* x ’(1 2 3)))

((r ’()))

(cons x r))

is

(let ((final (lambda (r) (values r)))

(list ’(1 2 3))

(r ’()))

(let loop ((list list) (r r))
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(if (null? list)

(final r)

(let ((x (car list))

(list (cdr list)))

(let ((continue (lambda (r)

(loop list r))))

(continue (cons x r)))))))

The only inefficiencies in this code are the final and continue procedures,
both of which could be substituted in-line. The macro expander could do the
substitution for continue when there is no explicit proceed variable, as in this
case, but not in general.

5.20 Sorting lists and vectors

(This section, as the libraries it describes, was written mostly by Olin Shivers
for the draft of SRFI 32.)

The sort libraries in Scheme 48 include

• vector insert sort (stable)

• vector heap sort

• vector quick sort (with regular comparisons and with median-of-3 pivot
picking)

• vector merge sort (stable)

• pure and destructive list merge sort (stable)

• stable vector and list merge

• miscellaneous sort-related procedures: vector and list merging, sorted
predicates, vector binary search, vector and list delete-equal-neighbor pro-
cedures.

• a general, non-algorithmic set of procedure names for general sorting and
merging

5.20.1 Design rules

What vs. how There are two different interfaces: “what” (simple) and “how”
(detailed).

Simple you specify semantics: datatype (list or vector), mutability, and sta-
bility.
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Detailed you specify the actual algorithm (quick, heap, insert, merge). Differ-
ent algorithms have different properties, both semantic and pragmatic, so
these exports are necessary.

It is necessarily the case that the specifications of these procedures make
statements about execution “pragmatics.” For example, the sole distinc-
tion between heap sort and quick sort—both of which are provided by this
library—-is one of execution time, which is not a “semantic” distinction.
Similar resource-use statements are made about “iterative” procedures,
meaning that they can execute on input of arbitrary size in a constant
number of stack frames.

Consistency across procedure signatures The two interfaces share com-
mon procedure signatures wherever possible, to facilitate switching a given call
from one procedure to another.

Less-than parameter first, data parameter after These procedures uni-
formly observe the following parameter order: the data to be sorted comes after
the comparison procedure. That is, we write

(sort < list)

not

(sort list <)

Ordering, comparison procedures and stability These routines take a
< comparison procedure, not a ≤ comparison procedure, and they sort into
increasing order. The difference between a < spec and a ≤ spec comes up in
two places:

• the definition of an ordered or sorted data set, and

• the definition of a stable sorting algorithm.

We say that a data set (a list or vector) is sorted or ordered if it contains no
adjacent pair of values . . . x, y . . . such that y < x.

In other words, scanning across the data never takes a “downwards” step.
If you use a ≤ procedure where these algorithms expect a < procedure, you

may not get the answers you expect. For example, the list-sorted? procedure
will return false if you pass it a ≤ comparison procedure and an ordered list
containing adjacent equal elements.

A “stable” sort is one that preserves the pre-existing order of equal elements.
Suppose, for example, that we sort a list of numbers by comparing their absolute
values, i.e., using comparison procedure

(lambda (x y) (< (abs x) (abs y)))

65



If we sort a list that contains both 3 and -3:

. . . 3, . . . ,−3 . . .

then a stable sort is an algorithm that will not swap the order of these two
elements, that is, the answer is guaranteed to to look like

. . . 3,−3 . . .

not
. . .− 3, 3 . . .

Choosing < for the comparison procedure instead of ≤ affects how stability is
coded. Given an adjacent pair x, y, (< y x) means “x should be moved in front
of x”—otherwise, leave things as they are. So using a ≤ procedure where a <
procedure is expected will invert stability.

This is due to the definition of equality, given a < comparator:

(and (not (< x y))

(not (< y x)))

The definition is rather different, given a ≤ comparator:

(and (<= x y)

(<= y x))

A “stable” merge is one that reliably favors one of its data sets when equal
items appear in both data sets. All merge operations in this library are stable,
breaking ties between data sets in favor of the first data set—elements of the
first list come before equal elements in the second list.

So, if we are merging two lists of numbers ordered by absolute value, the
stable merge operation list-merge

(list-merge (lambda (x y) (< (abs x) (abs y)))

’(0 -2 4 8 -10) ’(-1 3 -4 7))

reliably places the 4 of the first list before the equal-comparing -4 of the second
list:

(0 -1 -2 4 -4 7 8 -10)

Some sort algorithms will not work correctly if given a ≤ when they expect a <
comparison (or vice-versa).

In short, if your comparison procedure f answers true to (f x x), then

• using a stable sorting or merging algorithm will not give you a stable sort
or merge,

• list-sorted? may surprise you.

Note that you can synthesize a < procedure from a ≤ procedure with

(lambda (x y) (not (<= y x)))

if need be.
Precise definitions give sharp edges to tools, but require care in use. “Mea-

sure twice, cut once.”
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All vector operations accept optional subrange parameters The vector
operations specified below all take optional start/end arguments indicating a
selected subrange of a vector’s elements. If a start parameter or start/end
parameter pair is given to such a procedure, they must be exact, non-negative
integers, such that

0 ≤ start ≤ end ≤ (vector-length vector)

where vector is the related vector parameter. If not specified, they default to
0 and the length of the vector, respectively. They are interpreted to select the
range [start , end), that is, all elements from index start (inclusive) up to, but
not including, index end .

Required vs. allowed side-effects List-sort! and List-stable-sort!

are allowed, but not required, to alter their arguments’ cons cells to construct
the result list. This is consistent with the what-not-how character of the group
of procedures to which they belong (the sorting structure).

The list-delete-neighbor-dups!, list-merge! and list-merge-sort!

procedures, on the other hand, provide specific algorithms, and, as such, explic-
itly commit to the use of side-effects on their input lists in order to guarantee
their key algorithmic properties (e.g., linear-time operation).

5.20.2 Procedure specification

Structure name Functionality
sorting General sorting for lists and vectors
sorted Sorted predicates for lists and vectors
list-merge-sort List merge sort
vector-merge-sort Vector merge sort
vector-heap-sort Vector heap sort
vector-quick-sort Vector quick sort
vector-quick-sort3 Vector quick sort with 3-way comparisons
vector-insert-sort Vector insertion sort
delete-neighbor-duplicates List and vector delete neighbor duplicates
binary-searches Vector binary search

Note that there is no “list insert sort” package, as you might as well always use
list merge sort. The reference implementation’s destructive list merge sort will
do fewer set-cdr!s than a destructive insert sort.

Procedure naming and functionality Almost all of the procedures de-
scribed below are variants of two basic operations: sorting and merging. These
procedures are consistently named by composing a set of basic lexemes to indi-
cate what they do.
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Lexeme Meaning
sort The procedure sorts its input data set by some < comparison

procedure.
merge The procedure merges two ordered data sets into a single ordered

result.
stable This lexeme indicates that the sort is a stable one.
vector The procedure operates upon vectors.
list The procedure operates upon lists.
! Procedures that end in ! are allowed, and sometimes required,

to reuse their input storage to construct their answer.

Types of parameters and return values In the procedures specified below,

• A < or = parameter is a procedure accepting two arguments taken from
the specified procedure’s data set(s), and returning a boolean;

• Start and end parameters are exact, non-negative integers that serve
as vector indices selecting a subrange of some associated vector. When
specified, they must satisfy the relation

0 ≤ start ≤ end ≤ (vector-length vector)

where vector is the associated vector.

Passing values to procedures with these parameters that do not satisfy these
types is an error.

If a procedure is said to return “unspecified,” this means that nothing at all
is said about what the procedure returns, not even the number of return values.
Such a procedure is not even required to be consistent from call to call in the
nature or number of its return values. It is simply required to return a value
(or values) that may be passed to a command continuation, e.g. as the value
of an expression appearing as a non-terminal subform of a begin expression.
Note that in R5RS, this restricts such a procedure to returning a single value;
non-R5RS systems may not even provide this restriction.

sorting—general sorting package

This library provides basic sorting and merging functionality suitable for general
programming. The procedures are named by their semantic properties, i.e.,
what they do to the data (sort, stable sort, merge, and so forth).

• (list-sorted? < list) → boolean
• (list-merge < list1 list2) → list
• (list-merge! < list1 list2) → list
• (list-sort < lis) → list
• (list-sort! < lis) → list
• (list-stable-sort < list) → list
• (list-stable-sort! < list) → list
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• (list-delete-neighbor-dups = list) → list
• (vector-sorted? < v [start [end]]) → boolean
• (vector-merge < v1 v2 [start1 [end1 [start2 [end2]]]]) → vector
• (vector-merge! < v v1 v2 [start [start1 [end1 [start2 [end2]]]]])
• (vector-sort < v [start [end]]) → vector
• (vector-sort! < v [start [end]])
• (vector-stable-sort < v [start [end]]) → vector
• (vector-stable-sort! < v [start [end]])
• (vector-delete-neighbor-dups = v [start [end]]) → vector

Procedure Suggested algorithm
list-sort vector heap or quick
list-sort! list merge sort
list-stable-sort vector merge sort
list-stable-sort! list merge sort
vector-sort heap or quick sort
vector-sort! heap or quick sort
vector-stable-sort vector merge sort
vector-stable-sort! merge sort

List-Sorted? and vector-sorted? return true if their input list or vector is
in sorted order, as determined by their < comparison parameter.

All four merge operations are stable: an element of the initial list list1 or
vector vector1 will come before an equal-comparing element in the second list
list2 or vector vector2 in the result.

The procedures

• list-merge

• list-sort

• list-stable-sort

• list-delete-neighbor-dups

do not alter their inputs and are allowed to return a value that shares a common
tail with a list argument.

The procedure

• list-sort!

• list-stable-sort!

are “linear update” operators—they are allowed, but not required, to alter the
cons cells of their arguments to produce their results.

On the other hand, the list-merge! procedure make only a single, iterative,
linear-time pass over its argument list, using set-cdr!s to rearrange the cells
of the list into the final result —it works “in place.” Hence, any cons cell
appearing in the result must have originally appeared in an input. The intent
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of this iterative-algorithm commitment is to allow the programmer to be sure
that if, for example, list-merge! is asked to merge two ten-million-element
lists, the operation will complete without performing some extremely (possibly
twenty-million) deep recursion.

The vector procedures

• vector-sort

• vector-stable-sort

• vector-delete-neighbor-dups

do not alter their inputs, but allocate a fresh vector for their result, of length
end − start .

The vector procedures

• vector-sort!

• vector-stable-sort!

sort their data in-place. (But note that vector-stable-sort! may allocate
temporary storage proportional to the size of the input .)

Vector-merge returns a vector of length (end1 − start1 + (end2 − start2).
Vector-merge! writes its result into vector v , beginning at index start , for

indices less than end = start +(end1− start1)+(end2− start2). The target sub-
vector v [start , end) may not overlap either source subvector vector1[start1, end1)
vector2[start2, end2).

The ...-delete-neighbor-dups-... procedures: These procedures delete
adjacent duplicate elements from a list or a vector, using a given element-
equality procedure. The first/leftmost element of a run of equal elements is
the one that survives. The list or vector is not otherwise disordered.

These procedures are linear time—much faster than theO(n2) general duplicate-
element deletors that do not assume any “bunching” of elements (such as the
ones provided by SRFI 1). If you want to delete duplicate elements from a large
list or vector, you can sort the elements to bring equal items together, then use
one of these procedures, for a total time of O(n log(n)).

The comparison procedure = passed to these procedures is always applied
(= x y) where x comes before y in the containing list or vector.

• List-delete-neighbor-dups does not alter its input list; its answer may
share storage with the input list.

• Vector-delete-neighbor-dups does not alter its input vector, but rather
allocates a fresh vector to hold the result.

Examples:

(list-delete-neighbor-dups = ’(1 1 2 7 7 7 0 -2 -2))

=⇒ (1 2 7 0 -2)
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(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2))

=⇒ #(1 2 7 0 -2)

(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2) 3 7)

=⇒ #(7 0 -2)

Algorithm-specific sorting packages

These packages provide more specific sorting functionality, that is, specific com-
mitment to particular algorithms that have particular pragmatic consequences
(such as memory locality, asymptotic running time) beyond their semantic be-
haviour (sorting, stable sorting, merging, etc.). Programmers that need a par-
ticular algorithm can use one of these packages.

sorted—sorted predicates

• (list-sorted? < list) → boolean
• (vector-sorted? < vector) → boolean
• (vector-sorted? < vector start) → boolean
• (vector-sorted? < vector start end) → boolean

Return #f iff there is an adjacent pair . . . x, y . . . in the input list or vector
such that y < x. The optional start/end range arguments restrict vector-sorted?
to the indicated subvector.

list-merge-sort—list merge sort

• (list-merge-sort < list) → list
• (list-merge-sort! < list) → list
• (list-merge list1 < list2) → list
• (list-merge! list1 < list2) → list

The sort procedures sort their data using a list merge sort, which is stable. (The
reference implementation is, additionally, a “natural” sort. See below for the
properties of this algorithm.)

The ! procedures are destructive—they use set-cdr!s to rearrange the cells
of the lists into the proper order. As such, they do not allocate any extra cons
cells—they are “in place” sorts.

The merge operations are stable: an element of list1 will come before an
equal-comparing element in list2 in the result list.

vector-merge-sort—vector merge sort

• (vector-merge-sort < vector [start [end [temp]]]) → vector
• (vector-merge-sort! < vector [start [end [temp]]])
• (vector-merge < vector1 vector2 [start1 [end1 [start2 [end2]]]]) → vector
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• (vector-merge! < vector vector1 vector2 [start [start1 [end1 [start2 [end2]]]]])

The sort procedures sort their data using vector merge sort, which is stable.
(The reference implementation is, additionally, a “natural” sort. See below for
the properties of this algorithm.)

The optional start/end arguments provide for sorting of subranges, and
default to 0 and the length of the corresponding vector.

Merge-sorting a vector requires the allocation of a temporary “scratch” work
vector for the duration of the sort. This scratch vector can be passed in by the
client as the optional temp argument; if so, the supplied vector must be of size
≤ end , and will not be altered outside the range [start,end). If not supplied,
the sort routines allocate one themselves.

The merge operations are stable: an element of vector1 will come before an
equal-comparing element in vector2 in the result vector.

• Vector-merge-sort! leaves its result in vector [start , end).

• Vector-merge-sort returns a vector of length end − start .

• Vector-merge returns a vector of length (end1− start1) + (end2− start2).

• Vector-merge! writes its result into vector , beginning at index start , for
indices less than end = start +(end1−start1)+(end2−start2). The target
subvector

vector [start , end)

may not overlap either source subvector

vector1[start1, end1), or vector2[start2, end2).

vector-heap-sort—vector heap sort

• (vector-heap-sort < vector [start [end]]) → vector
• (vector-heap-sort! < vector [start [end]])

These procedures sort their data using heap sort, which is not a stable sorting
algorithm.

Vector-heap-sort returns a vector of length end−start . Vector-heap-sort!
is in-place, leaving its result in vector [start , end).

vector-quick-sort—vector quick sort

• (vector-quick-sort < vector [start [end]]) → vector
• (vector-quick-sort! < vector [start [end]])

These procedures sort their data using quick sort, which is not a stable sorting
algorithm.

Vector-quick-sort returns a vector of length end−start . Vector-quick-sort!
is in-place, leaving its result in vector [start , end).
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vector-quick-sort3—vector quick sort with 3-way comparisons

• (vector-quick-sort3 comp vector [start [end]]) → vector
• (vector-quick-sort3! comp vector [start [end]])

These procedures sort their data using quick sort, which is not a stable sorting
algorithm.

Vector-quick-sort3 returns a vector of length end−start . Vector-quick-sort3!
is in-place, leaving its result in vector [start , end).

These procedures implement a variant of quick-sort that takes a three-way
comparison procedure C. C compares a pair of elements and returns an exact
integer whose sign indicates their relationship:

(Cxy) < 0 ⇒ x < y

(Cxy) = 0 ⇒ x = y

(Cxy) > 0 ⇒ x > y

To help remember the relationship between the sign of the result and the
relation, use the procedure − as the model for C: (−xy) < 0 means that x < y;
(−xy) > 0 means that x > y.

vector-insert-sort—vector insertion sort

• (vector-insert-sort < vector [start [end]]) → vector
• (vector-insert-sort! < vector [start [end]])

These procedures stably sort their data using insertion sort.

• Vector-insert-sort returns a vector of length end − start .

• Vector-insert-sort! is in-place, leaving its result in vector [start , end).

delete-neighbor-duplicates—list and vector delete neighbor dupli-
cates

• (list-delete-neighbor-dups = list) → list
• (list-delete-neighbor-dups! = list) → list
• (vector-delete-neighbor-dups = vector [start [end]]) → vector
• (vector-delete-neighbor-dups! = vector [start [end]]) → end′

These procedures delete adjacent duplicate elements from a list or a vector,
using a given element-equality procedure =. The first/leftmost element of a run
of equal elements is the one that survives. The list or vector is not otherwise
disordered.

These procedures are linear time—much faster than theO(n2) general duplicate-
element deletors that do not assume any “bunching” of elements (such as the
ones provided by SRFI 1). If you want to delete duplicate elements from a large
list or vector, you can sort the elements to bring equal items together, then use
one of these procedures, for a total time of O(n log(n)).

The comparison procedure = passed to these procedures is always applied
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(= x y)

where x comes before y in the containing list or vector.

• List-delete-neighbor-dups does not alter its input list; its answer may
share storage with the input list.

• Vector-delete-neighbor-dups does not alter its input vector, but rather
allocates a fresh vector to hold the result.

• List-delete-neighbor-dups! is permitted, but not required, to mutate
its input list in order to construct its answer.

• Vector-delete-neighbor-dups! reuses its input vector to hold the an-
swer, packing its answer into the index range [start , end′), where end′ is
the non-negative exact integer returned as its value. It returns end′ as its
result. The vector is not altered outside the range [start , end′).

Examples:

(list-delete-neighbor-dups = ’(1 1 2 7 7 7 0 -2 -2))

=⇒ (1 2 7 0 -2)

(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2))

=⇒ #(1 2 7 0 -2)

(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2) 3 7)

=⇒ #(7 0 -2)

;; Result left in v[3,9):

(let ((v (vector 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6)))

(cons (vector-delete-neighbor-dups! = v 3)

v))

=⇒ (9 . #(0 0 0 1 2 3 4 5 6 4 4 5 5 6 6))

binary-searches—vector binary search

• (vector-binary-search < elt->key key vector [start [end]]) → integer or #f

• (vector-binary-search3 compare-proc vector [start [end]]) → integer or #f

vector-binary-search searches vector in range [start , end) (which default
to 0 and the length of vector , respectively) for an element whose associated
key is equal to key . The procedure elt->key is used to map an element to its
associated key. The elements of the vector are assumed to be ordered by the <
relation on these keys. That is,

(vector-sorted? (lambda (x y) (< (elt->key x) (elt->key y)))

vector start end) =⇒ true
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An element e of vector is a match for key if it’s neither less nor greater than
the key:

(and (not (< (elt->key e) key))
(not (< key (elt->key e))))

If there is such an element, the procedure returns its index in the vector as
an exact integer. If there is no such element in the searched range, the procedure
returns false.

(vector-binary-search < car 4 ’#((1 . one) (3 . three)

(4 . four) (25 . twenty-five)))

=⇒ 2

(vector-binary-search < car 7 ’#((1 . one) (3 . three)

(4 . four) (25 . twenty-five)))

=⇒ #f

Vector-binary-search3 is a variant that uses a three-way comparison pro-
cedure compare-proc. Compare-proc compares its parameter to the search key,
and returns an exact integer whose sign indicates its relationship to the search
key.

(compare-proc x) < 0 ⇒ x < search-key
(compare-proc x) = 0 ⇒ x = search-key
(compare-proc x) > 0 ⇒ x > search-key

(vector-binary-search3 (lambda (elt) (- (car elt) 4))

’#((1 . one) (3 . three)

(4 . four) (25 . twenty-five)))

=⇒ 2

5.20.3 Algorithmic properties

Different sort and merge algorithms have different properties. Choose the algo-
rithm that matches your needs:

Vector insert sort Stable, but only suitable for small vectors—O(n2).

Vector quick sort Not stable. Is fast on average—O(n log(n))—but has bad
worst-case behaviour. Has good memory locality for big vectors (unlike
heap sort). A clever pivot-picking trick (median of three samples) helps
avoid worst-case behaviour, but pathological cases can still blow up.

Vector heap sort Not stable. Guaranteed fast—O(n log(n)) worst case. Poor
locality on large vectors. A very reliable workhorse.
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Vector merge sort Stable. Not in-place—requires a temporary buffer of equal
size. Fast—O(n log(n))—and has good memory locality for large vectors.

The implementation of vector merge sort provided by this implementation
is, additionally, a “natural” sort, meaning that it exploits existing order
in the input data, providing O(n) best case.

Destructive list merge sort Stable, fast and in-place (i.e., allocates no new
cons cells). “Fast” means O(n log(n)) worst-case, and substantially better
if the data is already mostly ordered, all the way down to linear time for
a completely-ordered input list (i.e., it is a “natural” sort).

Note that sorting lists involves chasing pointers through memory, which
can be a loser on modern machine architectures because of poor cache and
page locality. Sorting vectors has inherently better locality.

This implementation’s destructive list merge and merge sort implementa-
tions are opportunistic—they avoid redundant set-cdr!s, and try to take
long already-ordered runs of list structure as-is when doing the merges.

Pure list merge sort Stable and fast—O(n log(n)) worst-case, and possibly
O(n), depending upon the input list (see discussion above).

Algorithm Stable? Worst case Average case In-place
Vector insert Yes O(n2) O(n2) Yes
Vector quick No O(n2) O(n log(n)) Yes
Vector heap No O(n log(n)) O(n log(n)) Yes
Vector merge Yes O(n log(n)) O(n log(n)) No
List merge Yes O(n log(n)) O(n log(n)) Either

5.21 Regular expressions

This section describes a functional interface for building regular expressions and
matching them against strings. The matching is done using the POSIX regular
expression package. Regular expressions are in the structure regexps.

A regular expression is either a character set, which matches any character
in the set, or a composite expression containing one or more subexpressions.
A regular expression can be matched against a string to determine success or
failure, and to determine the substrings matched by particular subexpressions.

• (regexp? value) → boolean

Returns #t if value is a regular expression created using the functional interface
for regular expressions, and #f otherwise.

5.21.1 Character sets

Character sets may be defined using a list of characters and strings, using a
range or ranges of characters, or by using set operations on existing character
sets.
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• (set character-or-string . . .) → char-set
• (range low-char high-char) → char-set
• (ranges low-char high-char . . .) → char-set
• (ascii-range low-char high-char) → char-set
• (ascii-ranges low-char high-char . . .) → char-set

Set returns a set that contains the character arguments and the characters in
any string arguments. Range returns a character set that contain all characters
between low-char and high-char , inclusive. Ranges returns a set that contains
all characters in the given ranges. Range and ranges use the ordering induced
by char->integer. Ascii-range and ascii-ranges use the ASCII ordering.
It is an error for a high-char to be less than the preceding low-char in the
appropriate ordering.

• (negate char-set) → char-set
• (intersection char-set char-set) → char-set
• (union char-set char-set) → char-set
• (subtract char-set char-set) → char-set

These perform the indicated operations on character sets.
The following character sets are predefined:

lower-case (set "abcdefghijklmnopqrstuvwxyz")

upper-case (set "ABCDEFGHIJKLMNOPQRSTUVWXYZ")

alphabetic (union lower-case upper-case)

numeric (set "0123456789")

alphanumeric (union alphabetic numeric)

punctuation (set "!\"#$%&’()*+,-./:;<=>?@[\\]^_‘{|}~")

graphic (union alphanumeric punctuation)

printing (union graphic (set #\space))

control (negate printing)

blank (set #\space (ascii->char 9)) ; 9 is tab
whitespace (union (set #\space) (ascii-range 9 13))

hexdigit (set "0123456789abcdefABCDEF")

The above are taken from the default locale in POSIX. The characters in
whitespace are space, tab, newline (= line feed), vertical tab, form feed , and
carriage return.

5.21.2 Anchoring

• (string-start) → reg-exp
• (string-end) → reg-exp
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String-start returns a regular expression that matches the beginning of the
string being matched against; string-end returns one that matches the end.

5.21.3 Composite expressions

• (sequence reg-exp . . .) → reg-exp
• (one-of reg-exp . . .) → reg-exp

Sequence matches the concatenation of its arguments, one-of matches any one
of its arguments.

• (text string) → reg-exp

Text returns a regular expression that matches the characters in string , in order.

• (repeat reg-exp) → reg-exp
• (repeat count reg-exp) → reg-exp
• (repeat min max reg-exp) → reg-exp

Repeat returns a regular expression that matches zero or more occurrences
of its reg-exp argument. With no count the result will match any number of
times (reg-exp*). With a single count the returned expression will match reg-
exp exactly that number of times. The final case will match from min to max
repetitions, inclusive. Max may be #f, in which case there is no maximum
number of matches. Count and min should be exact, non-negative integers;
max should either be an exact non-negative integer or #f.

5.21.4 Case sensitivity

Regular expressions are normally case-sensitive.

• (ignore-case reg-exp) → reg-exp
• (use-case reg-exp) → reg-exp

The value returned by ignore-case is identical its argument except that case
will be ignored when matching. The value returned by use-case is protected
from future applications of ignore-case. The expressions returned by use-case

and ignore-case are unaffected by later uses of the these procedures. By way
of example, the following matches "ab" but not "aB", "Ab", or "AB".

(text "ab")

while

(ignore-case (test "ab"))

matches "ab", "aB", "Ab", and "AB" and

(ignore-case (sequence (text "a")

(use-case (text "b"))))

matches "ab" and "Ab" but not "aB" or "AB".
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5.21.5 Submatches and matching

A subexpression within a larger expression can be marked as a submatch. When
an expression is matched against a string, the success or failure of each sub-
match within that expression is reported, as well as the location of the substring
matched be each successful submatch.

• (submatch key reg-exp) → reg-exp
• (no-submatches reg-exp) → reg-exp

Submatch returns a regular expression that matches its argument and causes
the result of matching its argument to be reported by the match procedure.
Key is used to indicate the result of this particular submatch in the alist of
successful submatches returned by match. Any value may be used as a key .
No-submatches returns an expression identical to its argument, except that all
submatches have been elided.

• (any-match? reg-exp string) → boolean
• (exact-match? reg-exp string) → boolean
• (match reg-exp string) → match or #f

• (match-start match) → index
• (match-end match) → index
• (match-submatches match) → alist

Any-match? returns #t if string matches reg-exp or contains a substring that
does, and #f otherwise. Exact-match? returns #t if string matches reg-exp and
#f otherwise.

Match returns #f if reg-exp does not match string and a match record if it
does match. A match record contains three values: the beginning and end of
the substring that matched the pattern and an a-list of submatch keys and cor-
responding match records for any submatches that also matched. Match-start
returns the index of the first character in the matching substring and match-end

gives index of the first character after the matching substring. Match-submatches
returns an alist of submatch keys and match records. Only the top match record
returned by match has a submatch alist.

Matching occurs according to POSIX. The match returned is the one with
the lowest starting index in string . If there is more than one such match, the
longest is returned. Within that match the longest possible submatches are
returned.

All three matching procedures cache a compiled version of reg-exp. Subse-
quent calls with the same reg-exp will be more efficient.

The C interface to the POSIX regular expression code uses ASCII nul as
an end-of-string marker. The matching procedures will ignore any characters
following an embedded ASCII nuls in string .

(define pattern (text "abc"))

(any-match? pattern "abc") → #t

(any-match? pattern "abx") → #f

(any-match? pattern "xxabcxx") → #t
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(exact-match? pattern "abc") → #t

(exact-match? pattern "abx") → #f

(exact-match? pattern "xxabcxx") → #f

(match pattern "abc") → #{match 0 3}
(match pattern "abx") → #f

(match pattern "xxabcxx") → #{match 2 5}

(let ((x (match (sequence (text "ab")

(submatch ’foo (text "cd"))

(text "ef"))

"xxxabcdefxx")))

(list x (match-submatches x)))

→ (#{match 3 9} ((foo . #{match 5 7}))

(match-submatches

(match (sequence

(set "a")

(one-of (submatch ’foo (text "bc"))

(submatch ’bar (text "BC"))))

"xxxaBCd"))

→ ((bar . #{match 4 6}))

5.22 SRFIs

‘SRFI’ stands for ‘Scheme Request For Implementation’. An SRFI is a descrip-
tion of an extension to standard Scheme. Draft and final SRFI documents, a
FAQ, and other information about SRFIs can be found at http://srfi.schemers.org.

Scheme 48 includes implementations of the following (final) SRFIs:

• SRFI 1 – List Library

• SRFI 2 – and-let*

• SRFI 4 – Homogeneous numeric vector datatypes (see note below)

• SRFI 5 – let with signatures and rest arguments

• SRFI 6 – Basic string ports

• SRFI 7 – Program configuration

• SRFI 8 – receive

• SRFI 9 – Defining record types

• SRFI 11 – Syntax for receiving multiple values
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• SRFI 13 – String Library

• SRFI 14 – Character-Set Library (see note below)

• SRFI 16 – Syntax for procedures of variable arity

• SRFI 17 – Generalized set!

• SRFI 19 – Time Data Types and Procedures

• SRFI 22 – Running Scheme Scripts on Unix

• SRFI 23 – Error reporting mechanism

• SRFI 25 – Multi-dimensional Array Primitives

• SRFI 26 – Notation for Specializing Parameters without Currying

• SRFI 27 – Sources of Random Bits

• SRFI 28 – Basic Format Strings

• SRFI 31 – A special form rec for recursive evaluation

• SRFI 34 – Exception Handling for Programs

• SRFI 37 – args-fold: a program argument processor

• SRFI 40 – A Library of Streams

• SRFI 42 – Eager Comprehensions

• SRFI 43 – Vector library

• SRFI 45 – Primitives for Expressing Iterative Lazy Algorithms

• SRFI 60 – Integers as Bits

• SRFI 61 – A more general cond clause

• SRFI 62 – S-expression comments

• SRFI 63 – Homogeneous and Heterogeneous Arrays

• SRFI 66 – Octet Vectors

• SRFI 67 – Compare Procedures

• SRFI 74 – Octet-Addressed Binary Blocks

• SRFI 78 – Lightweight testing
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Documentation on these can be found at the web site mentioned above.
SRFI 4 specifies an external representation for homogeneous numeric vectors

that is incompatible with R5RS. The Scheme 48 version of SRFI 4 does not
support this external representation.

SRFI 14 includes the procedure ->char-set which is not a standard Scheme
identifier (in R5RS the only required identifier starting with - is - itself). In the
Scheme 48 version of SRFI 14 we have renamed ->char-set as x->char-set.

SRFI bindings can be accessed either by opening the appropriate structure
(the structure srfi-n contains SRFI n) or by loading structure srfi-7 and then
using the ,load-srfi-7-program command to load an SRFI 7-style program.
The syntax for the command is

,load-srfi-7-program name filename

This creates a new structure and associated package, binds the structure to name
in the configuration package, and then loads the program found in filename into
the package.

As an example, if the file test.scm contains

(program (code (define x 10)))

this program can be loaded as follows:

> ,load-package srfi-7

> ,load-srfi-7-program test test.scm

[test]

> ,in test

test> x

10

test>
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Chapter 6

Unicode

Scheme 48 fully supports ISO 10646 (Unicode): Scheme characters represent
Unicode scalar values, and Scheme strings are arrays of scalar values. More
information on Unicode can be found at http://www.unicode.org/.

6.1 Characters and their codes

Scheme 48 internally represents characters as Unicode scalar values. The unicode
structure contains procedures for converting between characters and scalar val-
ues:

• (char->scalar-value char) → integer
• (scalar-value->char integer) → char
• (scalar-value? integer) → boolean

Char->scalar-value returns the scalar value of a character, and scalar-value->char

converts in the other direction. Scalar-value->char signals an error if passed
an integer that is not a scalar value.

Note that the Unicode scalar value range is

[0,#xD7FF ] ∪ [#xE000 ,#x10FFFF ]

In particular, this excludes the surrogates, which UTF-16 uses to encode scalar
values with two 16-bit words. Note that this representation differs from that of
Java, which uses UTF-16 code units as the character representation—Scheme 48
effectively uses UTF-32, and is thus in line with other Scheme implementations
and the current Unicode proposal for R6RS, as set forth in SRFI 75.

The R5RS procedures char->integer and integer->char are synonyms for
char->scalar-value and scalar-value->char, respectively.
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6.2 Character and string literals

The syntax specified here is in line with the current Unicode proposal for
R6RS, as set forth in SRFI 75, except for case-sensitivity. (Scheme 48 is case-
insensitive.)

6.2.1 Character literals

The following character names are available in addition to what R5RS provides:

• #\nul (ASCII 0)

• #\alarm (ASCII 7)

• #\backspace (ASCII 8)

• #\tab (ASCII 9)

• #\vtab (ASCII 11)

• #\page (ASCII 12)

• #\return (ASCII 13)

• #\esc (ASCII 27)

• #\rubout (ASCII 127)

• #\x〈x〉〈x〉. . . hex, explicitly or implicitly delimited, where 〈x〉〈x〉. . . de-
notes the scalar value of the character

6.2.2 String literals

The following escape characters in string literals are available in addition to
what R5RS provides:

• \a: alarm (ASCII 7)

• \b: backspace (ASCII 8)

• \t: tab (ASCII 9)

• \n: linefeed (ASCII 10)

• \v: vertical tab (ASCII 11)

• \f: formfeed (ASCII 12)

• \r: return (ASCII 13)

• \e: escape (ASCII 27)

• \’: quote (ASCII 39, same as unquoted)
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• \〈newline〉〈intraline whitespace〉: elided (allows a single-line string to span
source lines)

• \x〈x〉〈x〉. . . ; hex, where 〈x〉〈x〉. . . denotes the scalar value of the character

6.2.3 Identifiers and symbol literals

Where R5RS allows a 〈letter〉, Scheme 48 allows in addition any character whose
scalar value is greater than 127 and whose Unicode general category is Lu, Ll,
Lt, Lm, Lo, Mn, Mc, Me, Nd, Nl, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co.

Moreover, when a backslash appears in a symbol, it must start a \x〈x〉〈x〉. . . ;
escape, which identifies an arbitrary character to include in the symbol. Note
that a backslash itself can be specified as \x5C;.

6.3 Character classification and case mappings

The R5RS character predicates—char-whitespace?, char-lower-case?, char-upper-case?,
char-numeric?, and char-alphabetic?—all treat the full Unicode range.

Char-upcase and char-downcase as well as char-ci=?, char-ci<?, char-ci<=?,
char-ci>?, char-ci>=?, string-ci=?, string-ci<?, string-ci>?, string-ci<=?,
string-ci>=? all use the standard simple locale-insensitive Unicode case fold-
ing.

In addition, Scheme 48 provides the unicode-char-maps structure for more
complete access to the Unicode character classification with the following pro-
cedures and macros:

• (general-category general-category-name) → general-category syntax
• (general-category? x) → boolean
• (general-category-id general-category) → string
• (char-general-category char) → general-category

The syntax general-category returns a Unicode general category object asso-
ciated with general-category-name. (See Figure 6.1 below.) General-category?

is the predicate for general-category objects. General-category-id returns the
Unicode category id as a string (also listed in Figure 6.1). Char-general-category
returns the general category of a character.

• (general-category-primary-category general-category) → primary-category
• (primary-category primary-category-name) → primary-category syntax
• (primary-category? x) → boolean

General-category-primary-category maps the general category to its asso-
ciated primary category—also listed in Figure 6.1. The primary-category

syntax returns the primary-category object associated with primary-category-
name. Primary-category? is the predicate for primary-category objects.

The unicode-char-maps procedure also provides the following additional
case-mapping procedures for characters:
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• (char-titlecase? char) → boolean
• (char-titlecase char) → char
• (char-foldcase char) → char

Char-titlecase? tests if a character is in titlecase. Char-titlecase returns
the titlecase counterpart of a character. Char-foldcase folds the case of a
character, i.e. maps it to uppercase first, then to lowercase. The following case-
mapping procedures on strings are available:

• (string-upcase string) → string
• (string-downcase string) → string
• (string-titlecase string) → string
• (string-foldcase string) → string

These implement the simple case mappings defined by the Unicode standard—
note that the length of the output string may be different from that of the input
string.

6.4 SRFI 14

The SRFI 14 (“Character Sets”) implementation in the srfi-14 structure is
fully Unicode-compliant.

6.5 R6RS

The r6rs-unicode structure exports the procedures from the (r6rs unicode)

library of 5.91 draft of R6RS that are not already in the scheme structure:

string-normalize-nfd

string-normalize-nfkd

string-normalize-nfc

string-normalize-nfkc

char-titlecase

char-title-case?

char-foldcase

string-upcase

string-downcase

string-foldcase

string-titlecase

The r6rs-unicode structure also exports a char-general-category procedure
compatible with the (r6rs unicode) library. Note that, as Scheme 48 treats
source code case-insensitively, the symbols it returns are all-lowercase.
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6.6 I/O

Ports must encode any text a program writes to an output port to a byte
sequence, and conversely decode byte sequences when a program reads text
from an input port. Therefore, each port has an associated text codec that
describes how encode and decode text.

Note that the interface to the text codec functionality is experimental and
very likely to change in the future.

6.6.1 Text codecs

The i/o structure defines the following procedures:

• (port-text-codec port) → text-codec
• (set-port-text-codec! port text-codec)

These two procedures retrieve and set the text codec associated with a port,
respectively. A program can set text codec of a port at any time, even if it has
already performed I/O on the port.

The text-codecs structure defines the following procedures and macros:

• (text-codec? x) → boolean
• null-text-codec text-codec
• us-ascii-codec text-codec
• latin-1-codec text-codec
• utf-8-codec text-codec
• utf-16le-codec text-codec
• utf-16be-codec text-codec
• utf-32le-codec text-codec
• utf-32be-codec text-codec
• (find-text-codec string) → text-codec or #f

Text-codec? is the predicate for text codecs. Null-text-codec is primar-
ily meant for null ports that never yield input and swallow all output. The
following text codecs implement the US-ASCII, Latin-1, Unicode UTF-8, Uni-
code UTF-16 (little-endian), Unicode UTF-16 (big-endian), Unicode UTF-32
(little-endian), Unicode UTF-32 (big-endian) encodings, respectively.

Find-text-codec finds the codec associated with an encoding name. The
names of the above encodings are "null", "US-ASCII", "ISO8859-1", "UTF-8",
"UTF-16LE", "UTF-16BE", "UTF-32LE", and "UTF-32BE", respectively.

6.6.2 Text-codec utilities

The text-codec-utils structure exports a few utilities for dealing with text
codecs:

• (guess-port-text-codec-according-to-bom port) → text-codec or #f

• (set-port-text-codec-according-to-bom! port) → boolean
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These procedures look at the byte-order-mark (also called the “BOM”, U+FEFF)
at the beginning of a port and guess the appropriate text codec. This works only
for UTF-16 (little-endian and big-endian) and UTF-8. Guess-port-text-codec-according-to-bom
returns the text codec, or #f if it found no UTF-16 or UTF-8 BOM. Note that
this actually reads from the port. If the guess does not succeed, it is probably
a good idea to re-open the port. Set-port-text-codec-according-to-bom!

calls guess-port-text-codec-according-to-bom, sets the port text codec to
the result if successful and returns #t. If it is not successful, it returns #f. As
with guess-port-text-codec-according-to-bom, this reads from the port,
whether successful or not.

6.6.3 Creating text codecs

• (make-text-codec strings encode-proc decode-proc) → text-codec
• (text-codec-names text-codec) → list of strings
• (text-codec-encode-char-proc text-codec) → encode-proc
• (text-codec-decode-char-proc text-codec) → decode-proc
• (define-text-codec id name encode-proc decode-proc) syntax
• (define-text-codec id (name ...) encode-proc decode-proc) syntax

Make-text-codec constructs a text codec from a list of names, and an en-
code and a decode procedure. (See below on how to construct encode and
decode procedures.) Text-codec-names, text-codec-encode-char-proc, and
text-codec-decode-char-proc are the accessors for text codec. The define-text-codec
is a shorthand for binding a global identifier to a text codec. Its first form is for
codecs with only one name, the second for codecs with several names.

Encoding and decoding procedures work as follows:

• (encode-proc char buffer start count) → boolean maybe-count
• (decode-proc buffer start count) → maybe-char count

An encode-proc consumes a character char to encode, a byte vector buffer to
receive the encoding, an index start into the buffer, and a block size count .
It is supposed to encode the bytes into the block at [start , start + count). If
the encoding is successful, the procedure must return #t and the number of
bytes needed by the encoding. If the character cannot be encoded at all, the
procedure must return #f and #f. If the encoding is possible but the space is
not sufficient, the procedure must return #f and a total number of bytes needed
for the encoding.

A decode-proc consumes a byte vector buffer , an index start into the buffer,
and a block size count . It is supposed to decode the bytes at indices [start , start + count).
If the decoding is successful, it must return the decoded character at the be-
ginning of the block, and the number of bytes consumed. If the block cannot
begin with or be a prefix of a valid encoding, the procedure must return #f and
#f. If the block contains a true prefix of a valid encoding, the procedure must
return #f and a total count of bytes (including the buffer) needed to complete
the encoding. Note that this byte count is only a guess: the system will provide

88



that many bytes, but the decoding procedures might still signal an incomplete
encoding, causing the system to try to obtain more.

6.7 Default encodings

The default encoding for new ports is UTF-8. For the default current-input-port,
current-output-port, and current-error-port, Scheme 48 consults the OS
for encoding information.

For Unix, it consults nl langinfo(3), which in turn consults the LC envi-
ronment variables. If the encoding is not defined that way, Scheme 48 reverts
to US-ASCII.

Under Windows, Scheme 48 uses Unicode I/O (using UTF-16) for the default
ports connected to the console, and Latin-1 for default ports that are not.
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general-category-name primary-category-name Unicode category id
uppercase-letter letter "Lu"

lowercase-letter letter "Ll"

titlecase-letter letter "Lt"

modified-letter letter "Lm"

other-letter letter "Lo"

non-spacing-mark mark "Mn"

combining-spacing-mark mark "Mc"

enclosing-mark mark "Me"

decimal-digit-number number "Nd"

letter-number number "Nl"

other-number number "No"

opening-punctuation punctuation "Ps"

closing-punctuation punctuation "Pe"

initial-quote-punctuation punctuation "Pi"

final-quote-punctuation punctuation "Pf"

dash-punctuation punctuation "Pd"

connector-punctuation punctuation "Pc"

other-punctuation punctuation "Po"

currency-symbol symbol "Sc"

mathematical-symbol symbol "Sm"

modifier-symbol symbol "Sk"

other-symbol symbol "So"

space-separator separator "Zs"

paragraph-separator separator "Zp"

line-separator separator "Zl"

control-character miscellaneous "Cc"

formatting-character miscellaneous "Cf"

surrogate miscellaneous "Cs"

private-use-character miscellaneous "Co"

unassigned miscellaneous "Cn"

Figure 6.1: Unicode general categories and primary categories
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Chapter 7

Threads

This chapter describes Scheme 48’s thread system: Scheme 48 threads are fully
preemptive; all threads (currently) run within a single operating system process.
Scheme 48 allows writing customized, nested schedulers, and provides numerous
facilities for the synchronization of shared-memory programs, most importantly
proposals for optimistic concurrency.

7.1 Creating and controlling threads

The bindings described in this section are part of the threads structure.

• (spawn thunk) → thread
• (spawn thunk name) → thread

Spawn creates a new thread, passes that thread to the current scheduler, and
instructs the scheduler to run thunk in that thread. The name argument (a
symbol) associates a symbolic name with the thread; it is purely for debugging
purposes.

• (relinquish-timeslice)

• (sleep time-in-milliseconds)
• (terminate-current-thread)

Relinquish-timeslice instructs the scheduler to run another thread, thus re-
linquishing the timeslice of the current thread. Sleep does the same and asks
the scheduler to suspend the current thread for at least time-in-milliseconds mil-
liseconds before resuming it. Finally, terminate-current-thread terminates
the current thread.

Each thread is represented by a thread object. The following procedures
operate on that object:

• (current-thread) → thread
• (thread? thing) → boolean
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• (thread-name thread) → name
• (thread-uid thread) → integer

Current-thread returns the thread object associated with the currently running
thread. Thread? is the predicate for thread objects. Thread-name extracts the
name of the thread, if one was specified in the call to spawn, #f otherwise.
Thread-uid returns the uid of the thread, a unique integer assigned by the
thread system.

7.2 Advanced thread handling

The following bindings are part of the threads-internal structure:

• (terminate-thread! thread)
• (kill-thread! thread)

Terminate-thread! unwinds the thread associated with thread , running any
pending dynamic-wind after thunks (in that thread), after which the thread ter-
minates. Kill-thread! causes the thread associated with thread to terminate
immediately without unwinding its continuation.

7.3 Debugging multithreaded programs

Debugging multithreaded programs can be difficult.

As described in section 3.12, when any thread signals an error, Scheme 48
stops running all of the threads at that command level.

The following procedure (exported by the structure debug-messages) is use-
ful in debugging multi-threaded programs.

• (debug-message element0 . . .)

Debug-message prints the elements to ‘stderr’, followed by a newline. The only
types of values that debug-message prints in full are small integers (fixnums),
strings, characters, symbols, booleans, and the empty list. Values of other types
are abbreviated as follows:

pair (...)

vector #(...)

procedure #{procedure}
record #{<name of record type>}
all others ???

The great thing about debug-message is that it bypasses Scheme 48’s I/O and
thread handling. The message appears immediately, with no delays or errors.
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7.4 Optimistic concurrency

Most of the bindings described in this section are part of the proposals structure—
the low-level bindings described at the very end of the section are part of the
low-proposals structure.

A proposal is a record of reads from and and writes to locations in memory.
Each thread has an associated current proposal (which may be #f). The logging
operations listed below record any values read or written in the current proposal.
A reading operation, such as provisional-vector-ref, first checks to see if the
current proposal contains a value for the relevant location. If so, that value is
returned as the result of the read. If not, the current contents of the location
are stored in the proposal and then returned as the result of the read. A logging
write to a location stores the new value as the current contents of the location
in the current proposal; the contents of the location itself remain unchanged.

Committing to a proposal verifies that any reads logged in the proposal are
still valid and, if so, performs any writes that the proposal contains. A logged
read is valid if, at the time of the commit, the location contains the same value
it had at the time of the original read (note that this does not mean that no
change occurred, simply that the value now is the same as the value then). If a
proposal has an invalid read then the effort to commit fails; no change is made
to the value of any location. The verifications and subsequent writes to memory
are performed atomically with respect to other proposal commit attempts.

The queues structure (with source in scheme/big/queue.scm) is a thor-
oughly commented example of a moderately complex data structure made thread-
safe using optimistic concurrency.

• (call-ensuring-atomicity thunk) → value . . .
• (call-ensuring-atomicity! thunk)
• (ensure-atomicity exp ...) → value . . . syntax
• (ensure-atomicity! exp ...) syntax

If there is a proposal in place call-ensuring-atomicity and call-ensuring-atomicity!

simply make a (tail-recursive) call to thunk . If the current proposal is #f they
create a new proposal, install it, call thunk , and then try to commit to the
proposal. This process repeats, with a new proposal on each iteration, until
the commit succeeds. Call-ensuring-atomicity returns whatever values are
returned by thunk on its final invocation, while ensure-atomicity! discards
any such values and returns nothing.

Ensure-atomicity and ensure-atomicity! are macro versions of call-ensuring-atomicity
and call-ensuring-atomicity!: (ensure-atomicity exp ...) expands into
(call-ensuring-atomicity (lambda () exp ...)); likewise for ensure-atomicity!
and call-ensuring-atomicity!.

• (provisional-car pair) → value
• (provisional-cdr pair) → value
• (provisional-set-car! pair value)
• (provisional-set-cdr! pair value)
• (provisional-cell-ref cell) → value
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• (provisional-cell-set! cell value)
• (provisional-vector-ref vector i) → value
• (provisional-vector-set! vector i value)
• (provisional-string-ref vector i) → char
• (provisional-string-set! vector i char)
• (provisional-byte-vector-ref vector i) → k
• (provisional-byte-vector-set! vector i k)

These are all logging versions of their Scheme counterparts. Reads are checked
when the current proposal is committed and writes are delayed until the commit
succeeds. If the current proposal is #f these perform exactly as their Scheme
counterparts.

The following implementation of a simple counter may not function properly
when used by multiple threads.

(define (make-counter)

(let ((value 0))

(lambda ()

(set! value (+ value 1))

value)))

Here is the same procedure using a proposal to ensure that each increment
operation happens atomically. The value of the counter is kept in a cell (see
section 5.6) to allow the use of logging operations.

(define (make-counter)

(let ((value (make-cell 0)))

(lambda ()

(ensure-atomicity

(lambda ()

(let ((v (+ (provisional-cell-ref value)

1)))

(provisional-cell-set! value v)

v))))))

Because ensure-atomicity creates a new proposal only if there is no ex-
isting proposal in place, multiple atomic actions can be merged into a single
atomic action. For example, the following procedure increments an arbitrary
number of counters at the same time. This works even if the same counter
appears multiple times; (step-counters! c0 c0) would add two to the value
of counter c0.

(define (step-counters! . counters)

(ensure-atomicity

(lambda ()

(for-each (lambda (counter)

(counter))

counters))))
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(define-synchronized-record-type tag type-name
(constructor-name field-tag ...)

[( field-tag ...)]

predicate-name
(field-tag accessor-name [modifier-name])
...)

This is the same as define-record-type except all field reads and writes are
logged in the current proposal. If the optional list of field tags is present then
only those fields will be logged.

• (call-atomically thunk) → value(s)
• (call-atomically! thunk)
• (atomically exp ...) → value(s) syntax
• (atomically! exp ...) syntax

Call-atomically and call-atomically! are identical to call-ensuring-atomicity
and call-ensuring-atomicity! except that they always install a new pro-
posal before calling thunk. The current proposal is saved and then restored
after thunk returns. Call-atomically and call-atomically! are useful if
thunk contains code that is not to be combined with any other operation.

Atomically and atomically! are macro versions of call-atomically and
call-atomically!: (atomically exp ...) expands into (call-atomically

(lambda () exp ...)); likewise for atomically! and call-atomically!.
The following procedures and macro are intended primarily for use in imple-

menting new synchronization primitives or complex thread-safe data structures.

• (with-new-proposal (lose) exp ...) → value . . . syntax
• (maybe-commit) → boolean
• (proposal-active?) → boolean
• (remove-current-proposal!)

• (invalidate-current-proposal!)

With-new-proposal saves the current proposal, installs a new one, executes
the forms in the body, reinstalls the formerly current proposal, and returns
whatever the last body form returned. It also binds lose to a thunk repeating
the procedure of installing a new procedure and running the body. Typically,
the body will call maybe-commit and, if that fails, tail-call lose to try again. If
lose is called from a non-tail position of the body, the results are unspecified
(and probably harmful).

Maybe-commit verifies that any reads logged in the current proposal are still
valid and, if so, performs any writes that it contains. A logged read is valid if, at
the time of the commit, the location read contains the same value it had at the
time of the original read (note that this does not mean that no change occurred,
simply that the value now is the same as the value then). Maybe-commit returns
#t if the commit succeeds and #f if it fails.

Proposal-active? returns #t if a proposal is active, and #f otherwise.
Remove-current-proposal! removes and discards the current proposal; this
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can be used to clean up before raising an error. Invalidate-current-proposal!
ensures that any attempt to commit the current proposal will fail; this can be
used if an operation on a thread-safe data structure detects that it has seen the
data structure in an inconsistent state.

The following procedures give access to the low-level proposal mechanism.
They are defined in the low-proposals structure.

• (make-proposal) → proposal
• (current-proposal) → proposal
• (set-current-proposal! proposal)

Make-proposal creates a new proposal. Current-proposal and set-current-proposal

access and set the current thread’s proposal. It is an error to pass to set-current-proposal!
a proposal that is already in use.

7.5 Condition variables

Condition variables (defined in the condvars structure) allow threads perform
condition synchronization: It allows threads to block, waiting for a specified
condition—associated with a condition variable—to occur, and other threads to
wake up the waiting threads when the condition is fulfilled.

Note that, in Scheme 48, condition variables work in conjunction with pro-
posals, not with mutex locks or semaphores, as in most other implementations
of this concept.

• (make-condvar) → condvar
• (make-condvar id) → condvar
• (condvar? thing) → boolean
• (set-condvar-has-value?! condvar boolean)
• (condvar-has-value? condvar) → boolean
• (set-condvar-value! condvar value)
• (condvar-value condvar) → value
• (maybe-commit-and-wait-for-condvar condvar) → boolean
• (maybe-commit-and-set-condvar! condvar value) → boolean

Make-condvar creates a condition variable. (The optional id argument is only
for debugging purposes; the discloser for condition variables prints it out if
present.) Condvar? is the predicate for condition variables.

Each condition variable has an associated value and a flag has-value? sig-
nalling if the condition has already occured. The accessor for flag is condvar-has-value?;
set-condvar-has-value?! sets it. Both are provisional operations and go
through the current proposal. Set-condvar-value! sets the value of the con-
dition variable (provisionally), and condvar-value extracts it.

Maybe-commit-and-wait-for-condvar attempts to commit the current pro-
posal. If the commit succeeds, it suspends the current thread and registers it
with the condvar condition variable. Upon waking up again maybe-commit-and-wait-for-condvar

returns #t, If the commit fails, maybe-commit-and-set-condvar returns #f.
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Maybe-commit-and-set-condvar! sets the value of the condvar condition
variable to value, (provisionally) sets the has-value? flag to #t, and then at-
tempt to commit the current proposal. Upon success, it wakes up all suspended
threads registered with condvar and returns #t, otherwise, it returns #f.

7.6 Mutual exclusion

Scheme 48 also has more traditional mutual-exclusion synchronization abstrac-
tions, specifically mutex locks and placeholders. Note that typically synchro-
nization via optimistic concurrency is usually preferable: Mutual exclusion often
puts the running program into an inconsistent state for the time of the inclusion,
which has adverse effects on modularity and interruptibility.

7.6.1 Locks

The locks structure contains bindings that implement standard mutex locks:

• (make-lock) → lock
• (lock? thing) → boolean
• (obtain-lock lock)
• (maybe-obtain-lock lock) → boolean
• (release-lock lock)

Make-lock creates a lock in the “released” state. Lock? is the predicate for
locks.

Obtain-lock atomically checks if lock is in the “released” state. If it is, the
lock is put into the “obtained” state, and obtain-lock returns immediately. If
the lock is in the “obtained” state, the current thread is suspended and registered
with the lock. Maybe-obtain-lock, like obtain-lock, checks the state of lock :
if it is “released,” the lock is put into the “obtained” state, if it is “obtained,”
maybe-obtain-lock returns immediately. Maybe-obtain-lock returns #t if it
was able to obtain the lock, and #f otherwise.

Release-lock does nothing if lock is in the “released” state. If it is in
the “obtained” state, release-lock causes one of the threads suspended on an
obtain-lock lock operation to continue execution. If that thread is the last
thread registered with the lock, the lock is transferred to the “released” state.
In any case, release-lock returns immediately.

7.6.2 Placeholders

The placeholders structure contains bindings for placeholders—thread-safe,
write-once variables, akin to ID-90 I-structures or CML I-variables.

The typical scenario for placeholders is that, say, a thread A computes a
value needed by another thread B at some unspecified time. Both threads share
access to a placeholder; when A has computed the value, it places it into the
placeholder. When B needs the value, it extracts it from placeholder, blocking
if necessary.
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• (make-placeholder) → placeholder
• (make-placeholder id) → placeholder
• (placeholder? thing) → boolean
• (placeholder-set! placeholder value)
• (placeholder-value placeholder) → value

Make-placeholder creates an empty placeholder. (The optional id argument
is only for debugging purposes; the discloser for placeholders prints it out if
present.) Placeholder? is the predicate for placeholders.

Placeholder-set! places a value into a placeholder. Doing this more than
once signals an error. Placeholder-value extracts the value from the place-
holder and returns it. If the placeholder is empty, it blocks the current thread
until it becomes full.

7.7 Writing custom synchronization abstractions

The bindings explained in this section are part of the threads-internal struc-
ture. They are concerned with suspending threads and making them runnable
again upon some later event.

Typically, a suspended thread needs to be recorded in a queue somewhere
for later waking-up. To allow a thread to be recorded in multiple queues (say,
when it waits for one of a number of events), such thread queues are ordinary
queues containing cells that, in turn, contain the thread objects themselves.
Each thread has at most one such cell associated with it which is shared among
all queues (or other data structures) holding on to the suspended thread. The
cell is cleared when the thread is woken up.

• (thread-queue-empty? thread-queue) → boolean
• (maybe-dequeue-thread! thread-queue) → boolean

Thread-queue-empty? atomically checks whether the thread-queue thread queue
is empty, i.e., if it does not contain non-empty cells. Maybe-dequeue-thread!

provisionally dequeues a thread from thread-queue if it contains one. It returns
the dequeued thread or #f if the queue is empty.

• (maybe-commit-and-block cell) → boolean
• (maybe-commit-and-block-on-queue thread-queue) → boolean
• (maybe-commit-and-make-ready thread-or-queue) → boolean

Maybe-commit-and-block attempts to commit the current proposal. If this
succeeds, the current thread is blocked, the thread’s cell is set to cell , and #t

is returned. Otherwise, #f is returned. Maybe-commit-and-block-on-queue is
like maybe-commit-and-block, excepts that it creates a fresh cell for the thread
and enqueues it in thread-queue if the commit succeeds.

Maybe-commit-and-make-ready accepts either a thread object or a thread
queue as an argument. In either case, maybe-commit-and-make-ready tries to
commit the current proposal. If that succeeds, maybe-commit-and-make-ready
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makes its argument runnable: if thread-or-queue is a thread, that thread is made
runnable, if it is a thread queue, all threads on the queue are made runnable.
(In the latter case, none of the threads actually runs until all have been made
runnable.) Maybe-commit-and-make-ready returns #t if it succeeded, and #f

otherwise.

7.8 Concurrent ML abstractions

The interface to the Concurrent ML abstractions in Scheme 48 is mostly analo-
gous to the original implementation shipped with SML/NJ [9]. Note that both
the interface and implementation are new and may change in future releases.

The main terminological difference is that CML events are called rendezvous
in Scheme 48. For more information on programming with the CML abstrac-
tions, Reppy’s book [9] is recommended.

7.8.1 Basic rendezvous combinators

The basic rendezvous combinators live in the rendezvous structure.

• never-rv rendezvous
• (always-rv value) → rendezvous

Never-rv is a rendezvous that is never enabled for synchronization. (It is the
same as the never event in CML.) Always-rv returns a rendezvous that is
always enabled for synchronization, and always yields the same value value.
(This is the same as the alwaysEvt function in CML.)

• (choose rendezvous . . .) → rendezvous

Choose creates a rendezvous representing the choice of its arguments: Synchro-
nization on the resulting rendezvous will synchronize on one of the arguments
to choose, depending on which becomes enabled first. (This is the same as the
choose function in CML.)

• (wrap rendezvous proc) → rendezvous

Wrap wraps a post-synchronization procedure around rendezvous: When the
resulting rendezvous is synchronized, rendezvous is synchronized, and the value
it yields is passed to proc; the value returned by proc then is the result of the
synchronization. (This is the same as the CML wrap function.)

• (guard thunk) → rendezvous

Guard delays the creation of a rendezvous until synchronization time: It returns
a rendezvous that will, upon synchronization, turn into the rendezvous returned
by thunk . Guard can be used to perform pre-synchronization actions such as
resource allocation. (This is the same as the CML guard function.)

• (with-nack proc) → rendezvous
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With-nack, like guard, creates a delayed rendezvous: Upon synchronization, the
rendezvous actually used is the one returned by proc. In addition to the func-
tionality offered by guard, proc receives, as an argument, another rendezvous
which becomes enabled when another rendezvous involved in the synchroniza-
tion (via choose) is picked instead of the one produced by proc. (This is the
same as the CML withNack function.)

• (sync rendezvous) → value
• (select rendezvous . . .) → value

Sync synchronizes the current thread on rendezvous rendezvous, returning the
value it yields. Select synchronizes on the choice of its argument; (select r1
...rn) is semantically equivalent to (sync (choose select r1 ...rn)), but
may be implemented more efficiently. (These are the same as the CML functions
sync and select.)

7.8.2 Synchronous channels

The rendezvous-channels structure contains abstractions for bidirectional,
synchronous channels for communicating between two threads.

• (make-channel) → channel
• (channel? x) → boolean

Make-channel creates a new synchronous channel. (This is the same as the
CML channel function.) Channel? is the predicate for synchronous channels.

• (send-rv channel value) → rendezvous
• (send channel value)

Send-rv creates a rendezvous that, upon synchronization, sends message value
on the synchronous channel channel . The synchronization suceeds only when
another thread attempts to receive a message from channel . (This is the same
as the CML sendEvt function.) Send directly sends a message value on channel
channel ; (send c v) is equivalent to (sync (send-rv c v)). (Send is the
same as the CML send function.)

• (receive-rv channel) → rendezvous
• (receive channel)

Receive-rv creates a rendezvous which, upon synchronization, receives a mes-
sage on channel channel . (This is the same as the CML recEvt function.)
Receive directly receives a message on channel channel ; (receive c v) is
equivalent to (sync (receive-rv c v)). (Receive is the same as the CML
recv function.)

7.8.3 Synchronous variables

Two structures contain abstractions for synchronous variables: the rendezvous-placeholders
structure for so-called placeholders (write-once variables), and the rendezvous-jars
structure for jars (which allow multiple updates.)

100



Placeholders

Placeholders are write-once variables. The placeholders implemented by the
rendezvous-placeholders structure offer equivalent functionality to the place-
holders implemented by the placeholders structure (see Section 7.6.2), but
additionally allow converting a placeholder into a rendezvous. Note, however,
that placeholders from placeholders are different from and not interchangeable
with placeholders from rendezvous-placeholders.

• (make-placeholder) → placeholder
• (make-placeholder id) → placeholder
• (placeholder? x) → boolean

Make-placeholder creates an empty placeholder. (The optional id argument
is only for debugging purposes; the discloser for placeholders prints it out if
present.) (This is the same as the CML iVar function.) Placeholder? is the
predicate for placeholders.

• (placeholder-set! placeholder value)

Placeholder-set! places a value into a placeholder. Doing this more than
once signals an error. (This is the same as the CML iPut function.)

• (placeholder-value-rv placeholder) → rendezvous
• (placeholder-value placeholder) → value

Placeholder-value extracts the value from the placeholder and returns it. If
the placeholder is empty, it blocks the current thread until it becomes full. (This
is the same as the CML iGet function.) Placeholder-value-rv creates a ren-
dezvous that will, upon synchronization, extract the value from the placeholder
and yield it as a result. (This is the same as the CML iGetEvt function.)

Jars

A jar is a synchronous variable which can have two states: full and empty. It
becomes full when a value it put into it; putting a value into a full jar is an
error. Conversely, it becomes empty when a value is taken out of it. Trying to
take a value out of an empty jar blocks until it becomes full. (Jars are similar
to ID-90 M-structures.) Jars live in the rendezvous-jars structure.

• (make-jar) → jar
• (make-jar id) → jar
• (jar? x) → boolean

Make-jar creates an empty jar. (The optional id argument is only for debugging
purposes; the discloser for jars prints it out if present.) (This is the same as the
CML mVar function.) Jar? is the predicate for jars.

• (jar-put! jar value)
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Jar-put! places a value into a jar if it is empty. Applying jar-put! to a full
jar is an error. (This is the same as the CML mPut function.)

• (jar-take-rv placeholder) → rendezvous
• (jar-take placeholder) → value

Jar-take takes a value from a full jar, emptying it in the process. If the jar
is empty, jar-take blocks until it becomes full. (This is the same as the CML
mTake function.) Jar-take-rv creates a rendezvous that, upon synchronization,
will extract the value from a jar and empty it in the process. (This is the same
as the CML mTakeEvt function.)

7.8.4 Timeouts

The rendezvous-time structure allows creating rendezvous for alarms and time-
outs:

• (after-time-rv milliseconds) → rendezvous
• (at-real-time-rv time) → rendezvous

After-time-rv creates a rendezvous that becomes enabled at time interval mil-
liseconds after synchronization. (Actually, milliseconds is a minimum waiting
time; the actual delay may be longer.) (This is the same as the CML timeOutEvt

function.) At-real-time-rv creates a rendezvous that becomes enabled at an
absolute time specified by time; this absolute time is specified in the same way
as the return value real-time from the time structure. (This is the same as
the CML atTimeEvt function.)

7.8.5 CML to Scheme correspondence

The following table lists the Scheme names that correspond to particular CML
names.

CML name Scheme name
rendezvous

never never-rv

alwaysEvt always-rv

choose choose

wrap wrap

guard guard

withNack with-nack

sync sync

select select

rendezvous-channels

channel make-channel

sendEvt send-rv

send send
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recEvt receive-rv

rec receive

rendezvous-placeholders

iVar make-placeholder

iPut placeholder-set!

iGet placeholder-value

iGetEvt placeholder-value-rv

rendezvous-jars

mVar make-jar

mTake jar-take

mTakeEvt jar-take-rv

mPut jar-put!

rendezvous-time

timeOutEvt after-time-rv

atTimeEvt at-real-time-rv
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Chapter 8

Mixing Scheme 48 and C

This chapter describes the foreign-function interface for calling C functions from
Scheme, calling Scheme functions from C, and allocating storage in the Scheme
heap. Scheme 48 manages stub functions in C that negotiate between the calling
conventions of Scheme and C and the memory allocation policies of both worlds.
No stub generator is available yet, but writing stubs is a straightforward task.

The foreign-function interface is modeled after the Java Native Interface
(JNI), more information can be found at http://java.sun.com/javase/6/docs-
/technotes/guides/jni/index.html.

Currently, Scheme 48 supports two foreign-function interfaces: The old
GCPROTECT-style and the new JNI-style interface (this chapter) live side
by side. The old interface is deprecated and will go away in a future release.
Section 8.12 gives a recipe how to convert external code from the old to the new
interface.

8.1 Available facilities

The following facilities are available for interfacing between Scheme 48 and C:

• Scheme code can call C functions.

• The external interface provides full introspection for all Scheme objects.
External code may inspect, modify, and allocate Scheme objects arbitrar-
ily.

• External code may raise exceptions back to Scheme 48 to signal errors.

• External code may call back into Scheme. Scheme 48 correctly unrolls the
process stack on non-local exits.

• External modules may register bindings of names to values with a central
registry accessible from Scheme. Conversely, Scheme code can register
shared bindings for access by C code.
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8.1.1 Scheme structures

The structure external-calls has most of the Scheme functions described
here. The others are in load-dynamic-externals, which has the functions for
dynamic loading and name lookup from Section 8.4, and shared-bindings,
which has the additional shared-binding functions described in section 8.2.3.

8.1.2 C naming conventions

The names of all of Scheme 48’s visible C bindings begin with ‘s48 ’ (for pro-
cedures, variables, and macros). Note that the new foreign-function interface
does not distinguish between procedures and macros. Whenever a C name is
derived from a Scheme identifier, we replace ‘-’ with ‘ ’ and convert letters to
lowercase. A final ‘?’ converted to ‘ p’, a final ‘!’ is dropped. As a naming
convention, all functions and macros of the new foreign-function interface end
in ‘ 2’ (for now) to make them distinguishable from the old interface’s functions
and macros. Thus the C macro for Scheme’s pair? is s48 pair p 2 and the
one for set-car! is s48 set car 2. Procedures and macros that do not check
the types of their arguments have ‘unsafe’ in their names.

All of the C functions and macros described have prototypes or definitions
in the file c/scheme48.h.

8.1.3 Garbage collection and reference objects

Scheme 48 uses a precise, copying garbage collector. The garbage collector may
run whenever an object is allocated in the heap. The collector must be able
to locate all references to objects allocated in the Scheme 48 heap in order to
ensure that storage is not reclaimed prematurely and to update references to
objects moved by the collector. This interface takes care of communicating to
the garbage collector what objects it uses in most situations. It relieves the
programmer from having to think about garbage collector interactions in the
common case.

This interface does not give external code direct access to Scheme objects.
It introduces one level of indirection as external code never accepts or returns
Scheme values directly. Instead, external code accepts or returns reference ob-
jects of type s48 ref t that refer to Scheme values (their C type is defined to
be s48 value). This indirection is only needed as an interface to external code,
interior pointers in Scheme objects are unaffected.

There are two types of reference objects:

local references A local reference is valid for the duration of a function call
from Scheme to external code and is automatically freed after the external
function returns to the virtual machine.

global references A global reference remains valid until external code explic-
itly frees it.
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Scheme objects that are passed to external functions are passed as local refer-
ences. External functions return Scheme objects as local references. External
code has to manually manage Scheme objects that outlive a function call as
global references. Scheme objects outlive a function call if they are assigned to
a global variable of the external code or stored in long-living external objects,
see section 8.7.1.

A local reference is valid only within the dynamic context of the native
method that creates it. Therefore, a local reference behaves exactly like a local
variable in the external code: It is live as long as external code can access it.
To achieve this, every external function in the interface that accepts or returns
reference objects takes a call object of type s48 call t as its first argument. A
call object corresponds to a particular call from Scheme to C. The call object
holds all the references that belong to a call (like the call’s arguments and
return value) to external code from Scheme. External code may pass a local
reference through multiple external functions. The foreign-function interface
automatically frees all the local references a call object owns, along with the
call object itself, when an external call returns to Scheme.

This means that in the common case of Scheme calling an external function
that does some work on its arguments and returns without stashing any Scheme
objects in global variables or global data structures, the external code does not
need to do any bookkeeping, since all the reference objects the external code
accumulates are local references. Once the call returns, the foreign-function
interface frees all the local references.

For example, the functions to construct and access pairs are declared like
this:

• s48 ref t s48 cons 2(s48 call t call, s48 ref t car, s48 ref t cdr);

• s48 ref t s48 car 2(s48 call t call, s48 ref t pair);

• s48 ref t s48 cdr 2(s48 call t call, s48 ref t pair);

This foreign-function interface takes a significant burden off the programmer
as it handles most common cases automatically. If all the Scheme objects are
live for the extent of the current external call, the programmer does not have
to do anything at all. Since the lifetime of the Scheme objects is then identical
with the lifetime of the according reference objects. In this case, the systems
automatically manages both for the programmer. Using this foreign-function
interface does not make the code more complex; the code stays compact and
readable. The programmer has to get accustomed to passing the call argument
around.

How to manage Scheme objects that outlive the current call is described in
section 8.7.1.

Section 8.12 gives a recipe how to convert external code from the old GCPROTECT-
style interface to the new JNI-style interface.
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8.2 Shared bindings

Shared bindings are the means by which named values are shared between
Scheme code and C code. There are two separate tables of shared bindings,
one for values defined in Scheme and accessed from C and the other for values
going the other way. Shared bindings actually bind names to cells, to allow a
name to be looked up before it has been assigned. This is necessary because C
initialization code may be run before or after the corresponding Scheme code,
depending on whether the Scheme code is in the resumed image or is run in the
current session.

8.2.1 Exporting Scheme values to C

• (define-exported-binding name value) → shared-binding

• s48 ref t s48 get imported binding 2(char *name)

• s48 ref t s48 get imported binding local 2(s48 call t call, char *name)

• s48 ref t s48 shared binding ref 2(s48 call t call, s48 ref t shared binding)

Define-exported-binding makes value available to C code under name, which
must be a string , creating a new shared binding if necessary. The C function
s48 get imported binding 2 returns a global reference to the shared binding
defined for name, again creating it if necessary, s48 get imported binding local 2

returns a local reference to the shared binding (see section 8.1.3 for details on ref-
erence objects). The C macro s48 shared binding ref 2 dereferences a shared
binding, returning its current value.

8.2.2 Exporting C values to Scheme

Since shared bindings are defined during initialization, i.e. outside an external
call, there is no call object. Therefore, exporting shared bindings from C does
not use the new foreign-function interfaces specifications.

• void s48 define exported binding(char *name, s48 value v)

• (lookup-imported-binding string) → shared-binding
• (shared-binding-ref shared-binding) → value

These are used to define shared bindings from C and to access them from
Scheme. Again, if a name is looked up before it has been defined, a new binding
is created for it.

The common case of exporting a C function to Scheme can be done using
the macro s48 export function(name). This expands into

s48 define exported binding("name",
s48 enter pointer(name))

which boxes the function pointer into a Scheme byte vector and then exports
it. Note that s48 enter pointer allocates space in the Scheme heap and might
trigger a garbage collection; see Section 8.7.
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• (import-definition name) syntax
• (import-definition name c-name) syntax

These macros simplify importing definitions from C to Scheme. They expand
into

(define name (lookup-imported-binding c-name))
where c-name is as supplied for the second form. For the first form c-name is
derived from name by replacing ‘-’ with ‘ ’ and converting letters to lowercase.
For example, (import-definition my-foo) expands into

(define my-foo (lookup-imported-binding "my foo"))

8.2.3 Complete shared binding interface

There are a number of other Scheme functions related to shared bindings; these
are in the structure shared-bindings.

• (shared-binding? x) → boolean
• (shared-binding-name shared-binding) → string
• (shared-binding-is-import? shared-binding) → boolean
• (shared-binding-set! shared-binding value)
• (define-imported-binding string value)
• (lookup-exported-binding string)
• (undefine-imported-binding string)
• (undefine-exported-binding string)

Shared-binding? is the predicate for shared-bindings. Shared-binding-name

returns the name of a binding. Shared-binding-is-import? is true if the bind-
ing was defined from C. Shared-binding-set! changes the value of a binding.
Define-imported-binding and lookup-exported-binding are Scheme ver-
sions of s48 define exported binding and s48 lookup imported binding.
The two undefine- procedures remove bindings from the two tables. They
do nothing if the name is not found in the table.

The following C macros correspond to the Scheme functions above.

• int s48 shared binding p(s48 call t call, x)

• int s48 shared binding is import p(s48 call t call, s48 ref t s b)

• s48 ref t s48 shared binding name(s48 call t call, s48 ref t s b)

• void s48 shared binding set(s48 call t call, s48 ref t s b, s48 ref t v)

8.3 Calling C functions from Scheme

There are different ways to call C functions from Scheme, depending on how
the C function was obtained.

• (call-imported-binding-2 binding arg0 . . .) → value

Each of these applies its first argument, a C function that accepts and/or returns
objects of type s48 ref t and has its first argument of type s48 call t, to the
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rest of the arguments. For call-imported-binding-2 the function argument
must be an imported binding.

For all of these, the interface passes the current call object and the argi
values to the C function and the value returned is that returned by C procedure.
No automatic representation conversion occurs for either arguments or return
values. Up to twelve arguments may be passed. There is no method supplied
for returning multiple values to Scheme from C (or vice versa) (mainly because
C does not have multiple return values).

Keyboard interrupts that occur during a call to a C function are ignored
until the function returns to Scheme (this is clearly a problem; we are working
on a solution).

• (import-lambda-definition-2 name (formal ...)) syntax
• (import-lambda-definition-2 name (formal ...) c-name) syntax

These macros simplify importing functions from C that follow the return value
and argument conventions of the foreign-function interface and use s48 call t

and s48 ref t as their argument and return types. They define name to be a
function with the given formals that applies those formals to the corresponding
C binding. C-name, if supplied, should be a string. These expand into

(define temp (lookup-imported-binding c-name))
(define name
(lambda (formal ...)

(call-imported-binding-2 temp formal ...)))

If c-name is not supplied, it is derived from name by converting all letters to
lowercase and replacing ‘-’ with ‘ ’.

8.4 Dynamic loading

External code can be loaded into a running Scheme 48—at least on most variants
of Unix and on Windows. The required Scheme functions are in the structure
load-dynamic-externals.

To be suitable for dynamic loading, the externals code must reside in a
shared object. The shared object must define a function:

• void s48 on load(void)

The s48 on load is run upon loading the shared objects. It typically contains
invocations of S48 EXPORT FUNCTION to make the functionality defined by the
shared object known to Scheme 48.

The shared object may also define either or both of the following functions:

• void s48 on unload(void)

• void s48 on reload(void)
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Scheme 48 calls s48 on unload just before it unloads the shared object. If
s48 on reload is present, Scheme 48 calls it when it loads the shared object for
the second time, or some new version thereof. If it is not present, Scheme 48
calls s48 on load instead. (More on that later.)

For Linux, the following commands compile foo.c into a file foo.so that
can be loaded dynamically.

% gcc -c -o foo.o foo.c

% ld -shared -o foo.so foo.o

The following procedures provide the basic functionality for loading shared ob-
jects containing dynamic externals:

• (load-dynamic-externals string plete? rrepeat? rresume?) → dynamic-externals
• (unload-dynamic-externals string) → dynamic-externals
• (reload-dynamic-externals dynamic-externals)

Load-dynamic-externals loads the named shared objects. The plete? argu-
ment determines whether Scheme 48 appends the OS-specific suffix (typically
.so for Unix, and .dll for Windows) to the name. The rrepeat? argument
determines how load-dynamic-externals behaves if it is called again with
the same argument: If this is true, it reloads the shared object (and calls its
s48 on unload on unloading if present, and, after reloading, s48 on reload if
present or s48 on load if not), otherwise, it will not do anything. The rre-
sume? argument determines if an image subsequently dumped will try to load
the shared object again automatically. (The shared objects will be loaded before
any record resumers run.) Load-dynamic-externals returns a handle identify-
ing the shared object just loaded.

Unload-dynamic-externals unloads the shared object associated with the
handle passed as its argument, previously calling its s48 on unload function
if present. Note that this invalidates all external bindings associated with the
shared object; referring to any of them will probably crash the program.

Reload-dynamic-externals will reload the shared object named by its ar-
gument and call its s48 on unload function before unloading, and, after reload-
ing, s48 on reload if present or s48 on load if not.

• (import-dynamic-externals string) → dynamic-externals

This procedure represents the expected most usage for loading dynamic-externals.
It is best explained by its definition:

(define (import-dynamic-externals name)

(load-dynamic-externals name #t #f #t))

8.5 Accessing Scheme data from C

The C header file scheme48.h provides access to Scheme 48 data structures. The
type s48 ref t is used for reference objects that refer to Scheme values. When
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the type of a value is known, such as the integer returned by vector-length

or the boolean returned by pair?, the corresponding C procedure returns a C
value of the appropriate type, and not a s48 ref t. Predicates return 1 for true
and 0 for false.

8.5.1 Constants

The following macros denote Scheme constants:

• s48 false 2(s48 call t) is #f.

• s48 true 2(s48 call t) is #t.

• s48 null 2(s48 call t) is the empty list.

• s48 unspecific 2(s48 call t) is a value used for functions which have
no meaningful return value (in Scheme 48 this value returned by the
nullary procedure unspecific in the structure util).

• s48 eof 2(s48 call t) is the end-of-file object (in Scheme 48 this value is
returned by the nullary procedure eof-object in the structure i/o-internal).

8.5.2 Converting values

The following macros and functions convert values between Scheme and C rep-
resentations. The ‘extract’ ones convert from Scheme to C and the ‘enter’s go
the other way.

• int s48 extract boolean 2(s48 call t, s48 ref t)

• long s48 extract char 2(s48 call t, s48 ref t)

• char * s48 extract byte vector 2(s48 call t, s48 ref t)

• long s48 extract long 2(s48 call t, s48 ref t)

• long s48 extract unsigned long 2(s48 call t, s48 ref t)

• double s48 extract double 2(s48 call t, s48 ref t)

• s48 ref t s48 enter boolean 2(s48 call t, int)

• s48 ref t s48 enter char 2(s48 call t, long)

• s48 ref t s48 enter byte vector 2(s48 call t, char *, long)

(may GC)
• s48 ref t s48 enter long 2(s48 call t, long) (may GC)
• s48 ref t s48 enter long as fixnum 2(s48 call t, long) (may GC)
• s48 ref t s48 enter double 2(s48 call t, double) (may GC)

s48 extract boolean 2 is false if its argument is #f and true otherwise. s48 enter boolean 2

is #f if its argument is zero and #t otherwise.

The s48 extract char 2 function extracts the scalar value from a Scheme
character as a C long. Conversely, s48 enter char 2 creates a Scheme charac-
ter from a scalar value. (Note that ASCII values are also scalar values.)
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The s48 extract byte vector 2 function needs to deal with the garbage
collector to avoid invalidating the returned pointer. For more details see sec-
tion 8.7.3.

The second argument to s48 enter byte vector 2 is the length of byte
vector.

s48 enter long 2() needs to allocate storage when its argument is too large
to fit in a Scheme 48 fixnum. In cases where the number is known to fit within
a fixnum (currently 30 bits on a 32-bits architecture and 62 bit on a 64-bits
architecture including the sign), the following procedures can be used. These
have the disadvantage of only having a limited range, but the advantage of never
causing a garbage collection. s48 fixnum p 2(s48 call t) is a macro that true
if its argument is a fixnum and false otherwise.

• int s48 fixnum p 2(s48 call t, s48 ref t)

• s48 ref t s48 enter long as fixnum 2(s48 call t, long)

• long S48 MAX FIXNUM VALUE

• long S48 MIN FIXNUM VALUE

An error is signaled if the argument to s48 enter fixnum is less than S48 MIN FIXNUM VALUE

or greater than S48 MAX FIXNUM VALUE (−229 and 229− 1 on a 32-bits architec-
ture and −261 and 262 − 1 on a 64-bits architecture).

• int s48 true p 2(s48 call t, s48 ref t)

• int s48 false p 2(s48 call t, s48 ref t)

s48 true p is true if its argument is s48 true and s48 false p is true if its
argument is s48 false.

• s48 ref t s48 enter string latin 1 2(s48 call t, char*); (may GC)
• s48 ref t s48 enter string latin 1 n 2(s48 call t, char*, long);

(may GC)
• long s48 string latin 1 length 2(s48 call t, s48 ref t);

• long s48 string latin 1 length n 2(s48 call t, s48 ref t, long, long);

• void s48 copy latin 1 to string 2(s48 call t, char*, s48 ref t);

• void s48 copy latin 1 to string n 2(s48 call t, char*, long, s48 ref t);

• void s48 copy string to latin 1 2(s48 call t, s48 ref t, char*);

• void s48 copy string to latin 1 n 2(s48 call t, s48 ref t, long, long, char*);

• s48 ref t s48 enter string utf 8 2(s48 call t, char*); (may GC)
• s48 ref t s48 enter string utf 8 n 2(s48 call t, char*, long);

(may GC)
• long s48 string utf 8 length 2(s48 call t, s48 ref t);

• long s48 string utf 8 length n 2(s48 call t, s48 ref t, long, long);

• long s48 copy string to utf 8 2(s48 call t, s48 ref t, char*);

• long s48 copy string to utf 8 n 2(s48 call t, s48 ref t, long, long, char*);

• s48 ref t s48 enter string utf 16be 2(s48 call t, char*);

(may GC)
• s48 ref t s48 enter string utf 16be n 2(s48 call t, char*, long);

(may GC)
• long s48 string utf 16be length 2(s48 call t, s48 ref t);
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• long s48 string utf 16be length n 2(s48 call t, s48 ref t, long, long);

• long s48 copy string to utf 16be 2(s48 call t, s48 ref t, char*);

• long s48 copy string to utf 16be n 2(s48 call t, s48 ref t, long, long, char*);

• s48 ref t s48 enter string utf 16le 2(s48 call t, char*);

(may GC)
• s48 ref t s48 enter string utf 16le n 2(s48 call t, char*, long);

(may GC)
• long s48 string utf 16le length 2(s48 call t, s48 ref t);

• long s48 string utf 16le length n 2(s48 call t, s48 ref t, long, long);

• long s48 copy string to utf 16le 2(s48 call t, s48 ref t, char*);

• long s48 copy string to utf 16le n 2(s48 call t, s48 ref t, long, long, char*);

The s48 enter string latin 1 2 function creates a Scheme string, initializ-
ing its contents from its NUL-terminated, Latin-1-encoded argument. The
s48 enter string latin 1 n 2 function does the same, but allows specifying
the length explicitly—no NUL terminator is necessary.

The s48 string latin 1 length 2 function computes the length that the
Latin-1 encoding of its argument (a Scheme string) would occupy, not including
NUL termination. The s48 string latin 1 length 2 function does the same,
but allows specifying a starting index and a count into the input string.

The s48 copy latin 1 to string 2 function copies Latin-1-encoded char-
acters from its second NUL-terminated argument to the Scheme string that is its
third argument. The s48 copy latin 1 to string n 2 does the same, but al-
lows specifying the number of characters explicitly. The s48 copy string to latin 1 2

function converts the characters of the Scheme string specified as the second ar-
gument into Latin-1 and writes them into the string specified as the third argu-
ment. (Note that it does not NUL-terminate the result.) The s48 copy string to latin 1 n 2

function does the same, but allows specifying a starting index and a character
count into the source string.

The s48 extract latin 1 from string 2 function returns a buffer that con-
tains the Latin-1 encoded characters including NUL termination of the Scheme
string specified. The buffer that is returned is a local buffer managed by the
foreign-function interface and is automatically freed on the return of the current
call.

The s48 enter string utf 8 2 function creates a Scheme string, initial-
izing its contents from its NUL-terminated, UTF-8-encoded argument. The
s48 enter string utf 8 n 2 function does the same, but allows specifying the
length explicitly—no NUL terminator is necessary.

The s48 string utf 8 length 2 function computes the length that the UTF-
8 encoding of its argument (a Scheme string) would occupy, not including NUL
termination. The s48 string utf 8 length 2 function does the same, but al-
lows specifying a starting index and a count into the input string.

The s48 copy string to utf 8 2 function converts the characters of the
Scheme string specified as the second argument into UTF-8 and writes them
into the string specified as the third argument. (Note that it does not NUL-
terminate the result.) The s48 copy string to utf 8 n 2 function does the
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same, but allows specifying a starting index and a character count into the
source string. Both return the length of the written encodings in bytes.

The s48 extract utf 8 from string 2 function returns a buffer that con-
tains the UTF-8 encoded characters including NUL termination of the Scheme
string specified. The buffer that is returned is a local buffer managed by the
foreign-function interface and is automatically freed on the return of the current
call.

The functions with utf 16 in their names work analogously to their utf 8

counterparts, but implement the UTF-16 encodings. The lengths returned be
the length and copy string to functions are in terms of UTF-16 code units.
The extract function returns a local buffer that contains UTF-16 code units
including NUL termination.

8.5.3 C versions of Scheme procedures

The following macros and procedures are C versions of Scheme procedures. The
names were derived by replacing ‘-’ with ‘ ’, ‘?’ with ‘ p’, and dropping ‘!.

• int s48 eq p 2(s48 call t, s48 ref t, s48 ref t)

• int s48 char p 2(s48 call t, s48 ref t)

• int s48 null p 2(s48 call t, s48 ref t)

• int s48 pair p 2(s48 call t, s48 ref t)

• s48 ref t s48 car 2(s48 call t, s48 ref t)

• s48 ref t s48 cdr 2(s48 call t, s48 ref t)

• void s48 set car 2(s48 call t, s48 ref t, s48 ref t)

• void s48 set cdr 2(s48 call t, s48 ref t, s48 ref t)

• s48 ref t s48 cons 2(s48 call t, s48 ref t, s48 ref t) (may GC)
• long s48 length 2(s48 call t, s48 ref t)

• int s48 vector p 2(s48 call t, s48 ref t)

• long s48 vector length 2(s48 call t, s48 ref t)

• s48 ref t s48 vector ref 2(s48 call t, s48 ref t, long)

• void s48 vector set 2(s48 call t, s48 ref t, long, s48 ref t)

• s48 ref t s48 make vector 2(s48 call t, long, s48 ref t) (may GC)

• int s48 string p 2(s48 call t, s48 ref t)

• long s48 string length 2(s48 call t, s48 ref t)

• long s48 string ref 2(s48 call t, s48 ref t, long)

• void s48 string set 2(s48 call t, s48 ref t, long, long)

• s48 ref t s48 make string 2(s48 call t, long, char) (may GC)

• int s48 symbol p 2(s48 call t, s48 ref t)

• s48 ref t s48 symbol to string 2(s48 call t, s48 ref t)

• int s48 byte vector p 2(s48 call t, s48 ref t)

• long s48 byte vector length 2(s48 call t, s48 ref t)

• char s48 byte vector ref 2(s48 call t, s48 ref t, long)

• void s48 byte vector set 2(s48 call t, s48 ref t, long, int)

• s48 ref t s48 make byte vector 2(s48 call t, long, int) (may GC)
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8.6 Calling Scheme functions from C

External code that has been called from Scheme can call back to Scheme pro-
cedures using the following function.

• s48 ref t s48 call scheme 2(s48 call t, s48 ref t p, long nargs, ...)

This calls the Scheme procedure p on nargs arguments, which are passed as
additional arguments to s48 call scheme 2. There may be at most twelve
arguments. The value returned by the Scheme procedure is returned by the
C procedure. Invoking any Scheme procedure may potentially cause a garbage
collection.

There are some complications that occur when mixing calls from C to Scheme
with continuations and threads. C only supports downward continuations (via
longjmp()). Scheme continuations that capture a portion of the C stack have
to follow the same restriction. For example, suppose Scheme procedure s0

captures continuation a and then calls C procedure c0, which in turn calls
Scheme procedure s1. Procedure s1 can safely call the continuation a, because
that is a downward use. When a is called Scheme 48 will remove the portion
of the C stack used by the call to c0. On the other hand, if s1 captures a
continuation, that continuation cannot be used from s0, because by the time
control returns to s0 the C stack used by c0 will no longer be valid. An attempt
to invoke an upward continuation that is closed over a portion of the C stack
will raise an exception.

In Scheme 48 threads are implemented using continuations, so the downward
restriction applies to them as well. An attempt to return from Scheme to C at
a time when the appropriate C frame is not on top of the C stack will cause
the current thread to block until the frame is available. For example, suppose
thread t0 calls a C procedure which calls back to Scheme, at which point control
switches to thread t1, which also calls C and then back to Scheme. At this point
both t0 and t1 have active calls to C on the C stack, with t1’s C frame above
t0’s. If thread t0 attempts to return from Scheme to C it will block, as its
frame is not accessible. Once t1 has returned to C and from there to Scheme,
t0 will be able to resume. The return to Scheme is required because context
switches can only occur while Scheme code is running. T0 will also be able to
resume if t1 uses a continuation to throw past its call to C.

8.7 Interacting with the Scheme heap

Scheme 48 uses a copying, precise garbage collector. Any procedure that allo-
cates objects within the Scheme 48 heap may trigger a garbage collection.

Local object references refer to values in the Scheme 48 heap and are auto-
matically registered with the garbage collector by the interface for the duration
of a function call from Scheme to C so that the values will be retained and the
references will be updated if the garbage collector moves the object.

Global object references need to be created and freed explicitly for Scheme
values that need to survive one function call, e.g. that are stored in global
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variables, global data structures or are passed to libraries. See section 8.7.1 for
details.

Additionally, the interface provides local buffers that are malloc’d regions of
memory valid for the duration of a function call and are freed automatically upon
return from the external code. This relieves the programmer from explicitly
freeing locally allocated memory. See section 8.7.2 for details.

The interface treats byte vectors in a special way, since the garbage collec-
tor has no facility for updating pointers to the interiors of objects, so that such
pointers, for example the ones returned by s48 unsafe extract byte vector 2,
will likely become invalid when a garbage collection occurs. The interface pro-
vides a facility to prevent a garbage collection from invalidating pointers to byte
vector’s memory region, see section 8.7.3 for details.

8.7.1 Registering global references

When external code needs a reference object to survive the current call, the
external code needs to do explicit bookkeeping. Local references must not be
stored in global variables of the external code or passed to other threads, since
all local references are freed once the call returns, which leads to a dangling
pointer in the global variable or other thread respectively. Instead, promote
a local reference to a global reference and store it in a global variable or pass
to another thread as global references will survive the current call. Since the
foreign-function interface never automatically frees global references, the pro-
grammer must free them at the right time.

• s48 ref t s48 make global ref(s48 value obj)

• void s48 free global ref(s48 ref t ref)

• s48 ref t s48 local to global ref(s48 ref t ref)

s48 make global ref permanently registers the Scheme value obj as a global
reference with the garbage collector. Basic Scheme values are s48 value true,
s48 value false, s48 value null, s48 value unspecific, s48 value undefined,

and s48 value eof.
To free a global reference an to unregister it with the garbage collector,

use s48 free global ref. The function s48 local to global ref promotes a
local reference object to a global reference object.

For example, to maintain a global list of values, declare a static global vari-
able

s48_ref_t global_list = NULL;

and initialize it in the external code’s initialization function

global_list = s48_make_global_ref(_s48_value_null);

Note that you need to use a Scheme value (not a reference object) as the argu-
ment for s48 make global ref, since there is not yet a call object at the time
external code gets initialized. To add new value to the list, you can use the
following snippet:
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temp = global_list;

global_list = s48_local_to_global_ref(s48_cons_2(call, new_value, global_list))

s48_free_global_ref(temp);

You have to remember to always promote reference objects to global references
when assigning to a global variable (and later, to free them manually). Note
that it is more efficient to free the previous head of the list when adding a new
element to the list.

8.7.2 Local buffers

The foreign-function interface supports the programmer with allocating memory
in external code: The programmer can request chunks of memory, called local
buffers, that are automatically freed on return from the current call.

• void *s48 make local buf (s48 call t, size t)

• void s48 free local buf (s48 call t, void *)

The function s48 make local buf returns a block of memory of the given
size in bytes. This memory freed by the foreign-function interface when the
current call returns. To free the buffer manually, use s48 free local buf.

8.7.3 Special treatment for byte vectors

The interface treats byte vectors in a special way, since the garbage collector has
no facility for updating pointers to the interiors of objects, so that such point-
ers, for example the ones returned by s48 unsafe extract byte vector 2, will
likely become invalid when a garbage collection occurs. The interface provides a
facility to prevent a garbage collection from invalidating pointers to byte vector’s
memory region. It does this by copying byte vectors that are used in external
code from and to the Scheme heap.

These functions create byte vectors:

• s48 ref t s48 make byte vector 2(s48 call t, long) (may GC)
• s48 ref t s48 make unmovable byte vector 2(s48 call t, long)

(may GC)
• s48 ref t s48 enter byte vector 2(s48 call t, const char *, long)

(may GC)
• s48 ref t s48 enter unmovable byte vector 2(s48 call t, const char *, long)

(may GC)

s48 make byte vector 2 creates a byte vector of given size, s48 make unmovable byte vector 2

creates a byte vector in that is not moved by the garbage collector (only the Bi-
bop garbage collector supports this). The functions s48 enter byte vector 2

and s48 enter unmovable byte vector 2 create and initialize byte vectors.
The following functions copy byte vectors from and to the Scheme heap:

• void s48 extract byte vector region 2(s48 call t, s48 ref t, long, long, char*)

• void s48 enter byte vector region 2(s48 call t, s48 ref t, long, long, char*)
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• void s48 copy from byte vector 2(s48 call t, s48 ref t, char *)

• void s48 copy to byte vector 2(s48 call t, s48 ref t, char *)

s48 extract byte vector region 2 copies a given section from the given
byte vector to its last argument, s48 enter byte vector region 2 copies the
contents of its last argument to its first argument to the given index. s48 copy from byte vector 2

copies the whole byte vector to its last argument, s48 copy to byte vector 2

copies the contents of its last argument to the byte vector.

• char *s48 extract byte vector unmanaged 2(s48 call t, s48 ref t)

• void s48 release byte vector 2(s48 call t, s48 ref t, char*)

s48 extract byte vector unmanaged 2 returns a local buffer that is valid
during the current external call and copies the contents of the given byte vector
to the returned buffer. The returned byte vector may be a copy of the Scheme
byte vector, changes made to the returned byte vector will not necessarily be
reflected in Scheme until s48 release byte vector 2 is called.

The following functions to access byte vectors come with the most support
from the foreign-function interface. Byte vectors that are accessed via these
functions are automatically managed by the interface and are copied back to
Scheme on return from the current call:

• char *s48 extract byte vector 2(s48 call t, s48 ref t)

• char *s48 extract byte vector readonly 2(s48 call t, s48 ref t)

s48 extract byte vector 2 extracts a byte vector from Scheme by making
a copy of the byte vectors contents and returning a pointer to that copy. Changes
to the byte vector are automatically copied back to the Scheme heap when the
function returns, external code raises an exception, or external code calls a
Scheme function. s48 extract byte vector readonly 2 should be used for
byte vectors that are not modified by external code, since these byte vectors are
not copied back to Scheme.

8.7.4 Memory overhead

Each reference object consumes a certain amount of memory itself, in addition
to the memory taken by the referred Scheme object itself. Even though local
references are eventually freed on return of an external call, there are some situ-
ations where it is desirable to free local references explicitly, since waiting until
the call returns may be too long or never happen, which could keep unneeded
objects live:

• External code may create a large number of local references in a single
external call. An example is the traversal of a list: Each call from external
code to the functions that correspond to car and cdr returns a fresh
local reference. To avoid the consumption of storage for local references
proportional to the length of the list, the traversal must free the no-longer-
needed references as it goes.

For example, this is a straightforward definition of an external function
that calculates the length of a list:
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s48_ref_t

s48_length_2(s48_call_t call, s48_ref_t list)

{

long i = 0;

while (!(s48_null_p_2(call, list)))

{

list = s48_cdr_2(call, list);

++i;

}

return s48_unsafe_enter_long_as_fixnum_2(call, i);

}

In this implementation, each iteration step creates a new local reference
object via s48 cdr 2 that is actually only needed for the next iteration
step. As a result, this function creates new local references for every
element of the list. The local references are live during the entire function
call.

To avoid consuming storage proportional to the length of the list for all
those local reference objects, the improved version cleans up the unneeded
local reference on every iteration step:

s48_ref_t

s48_length_2(s48_call_t call, s48_ref_t list)

{

s48_ref_t l = s48_copy_local_ref(call, list);

long i = 0;

while (!(s48_null_p_2(call, l)))

{

s48_ref_t temp = l;

l = s48_cdr_2(call, l);

s48_free_local_ref(call, temp);

++i;

}

return s48_unsafe_enter_long_as_fixnum_2(call, i);

}

Note that without the call to s48 copy local ref the reference to the
head of the list would be freed along with all the temporary references.
This would render the whole list unusable after the return from s48 length 2.

• The external call does not return at all. If the external function enters an
infinite event dispatch loop, for example, it is crucial that the programmer
releases local references manually that he created inside the loop so that
they do not accumulate indefinitely and lead to a memory leak.
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• External code may hold a local reference to a large Scheme object. After
the external code is done working on this object, it performs some addi-
tional computation before returning to the caller. The local reference to
the large object prevents the object from being garbage collected until the
external function returns, even if the object is no longer in use for the re-
mainder of the computation. It is more space-efficient if the programmer
frees the local reference when the external function does not need it any
longer and will not return for quite some time.

• There are common situations where local references are created solely to
be passed to another function and afterwards never used again. In this
case, the called function can free the local references of the arguments.

• To improve memory usage while making subcalls from external calls, the
foreign-function interface provides functionality to create a new (sub-)call
object and clean the local references that are created during that subcall:

• s48 call t s48 make subcall(s48 call t call)

• void s48 free subcall(s48 call t subcall)

• s48 ref t s48 finish subcall(s48 call t call, s48 call t subcall, s48 ref t ref)

s48 make subcall returns a new call object that represents a subcall of
the current call and can be passed as the call argument to any subcalls
of the current call. Upon return of a subcall, s48 free subcall frees
the subcall and all the local references associated with it. The function
s48 finish subcall also frees the subcall and all the local references associ-
ated with it, but copies its third argument to the current call, so that it
survives the subcall.

8.7.5 Keeping C data structures in the Scheme heap

C data structures can be kept in the Scheme heap by embedding them inside
byte vectors. The following macros can be used to create and access embedded
C objects.

• s48 ref t s48 make value 2(s48 call t, type) (may GC)
• s48 ref t s48 make sized value 2(s48 call t, size) (may GC)
• type s48 extract value 2(s48 call t, s48 ref t, type)

• long s48 value size 2(s48 call t, s48 ref t)

• type * s48 extract value pointer 2(s48 call t, s48 ref t, type)

• void s48 set value 2(s48 call t, s48 ref t, type, value)

s48 make value 2 makes a byte vector large enough to hold an object whose
type is type. s48 make sized value 2 makes a byte vector large enough to hold
an object of size bytes. s48 extract value 2 returns the contents of a byte vec-
tor cast to type, s48 value size 2 returns its size, and s48 extract value pointer 2

returns a pointer to the contents of the byte vector. The value returned by
s48 extract value pointer 2 is valid only until the next garbage collection.
s48 set value 2 stores value into the byte vector.
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Pointers to C data structures can be stored in the Scheme heap:

• s48 ref t s48 enter pointer 2(s48 call t, void *) (may GC)
• void * s48 extract pointer 2(s48 call t, s48 ref t) (may GC)

The function s48 enter pointer 2 makes a byte vector large enough to hold
the pointer value and stores the pointer value in the byte vector. The function
s48 extract pointer 2 extracts the pointer value from the scheme heap.

8.7.6 C code and heap images

Scheme 48 uses dumped heap images to restore a previous system state. The
Scheme 48 heap is written into a file in a machine-independent and operating-
system-independent format. The procedures described above may be used to
create objects in the Scheme heap that contain information specific to the cur-
rent machine, operating system, or process. A heap image containing such
objects may not work correctly when resumed.

To address this problem, a record type may be given a ‘resumer’ procedure.
On startup, the resumer procedure for a type is applied to each record of that
type in the image being restarted. This procedure can update the record in a
manner appropriate to the machine, operating system, or process used to resume
the image.

• (define-record-resumer record-type procedure)

Define-record-resumer defines procedure, which should accept one argument,
to be the resumer for record-type. The order in which resumer procedures are
called is not specified.

The procedure argument to define-record-resumer may be #f, in which
case records of the given type are not written out in heap images. When writing
a heap image any reference to such a record is replaced by the value of the
record’s first field, and an exception is raised after the image is written.

8.8 Using Scheme records in C code

External modules can create records and access their slots positionally.

• s48 ref t s48 make record 2(s48 call t, s48 ref t) (may GC)
• int s48 record p 2(s48 call t, s48 ref t)

• s48 ref t s48 record type 2(s48 call t, s48 ref t)

• s48 ref t s48 record ref 2(s48 call t, s48 ref t, long)

• void s48 record set 2(s48 call t, s48 ref t, long, s48 ref t)

The argument to s48 make record 2 should be a shared binding whose value is
a record type. In C the fields of Scheme records are only accessible via offsets,
with the first field having offset zero, the second offset one, and so forth. If the
order of the fields is changed in the Scheme definition of the record type the C
code must be updated as well.

For example, given the following record-type definition
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(define-record-type thing :thing

(make-thing a b)

thing?

(a thing-a)

(b thing-b))

the identifier :thing is bound to the record type and can be exported to C:

(define-exported-binding "thing-record-type" :thing)

Thing records can then be made in C:

static s48_ref_t

thing_record_type_binding = NULL;

void initialize_things(void)

{
thing_record_type_binding =

s48_get_imported_binding_2("thing-record-type");

}

s48_ref_t make_thing(s48_call_t call, s48_ref_t a, s48_ref_t b)

{
s48_ref_t thing;

thing = s48_make_record_2(call, thing_record_type_binding);

s48_record_set_2(call, thing, 0, a);

s48_record_set_2(call, thing, 1, b);

return thing;

}

Note that the interface takes care of protecting all local references against the
possibility of a garbage collection occurring during the call to s48 make record 2();
also note that the record type binding is a global reference that is live until ex-
plicitly freed.

8.9 Raising exceptions from external code

The following macros explicitly raise certain errors, immediately returning to
Scheme 48. Raising an exception performs all necessary clean-up actions to
properly return to Scheme 48, including adjusting the stack of protected vari-
ables.

The following procedures are available for raising particular types of excep-
tions. These never return.

• s48 assertion violation 2(s48 call t, const char* who, const char* message, long count, ...)

• s48 error 2(s48 call t, const char* who, const char* message, long count, ...)

• s48 os error 2(s48 call t, const char* who, const char* message, long count, ...)

• s48 out of memory error 2(s48 call t, )
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An assertion violation signaled via s48 assertion violation 2 typically means
that an invalid argument (or invalid number of arguments) has been passed. An
error signaled via s48 error 2 means that an environmental error (like an I/O
error) has occurred. In both cases, who indicates the location of the error,
typically the name of the function it occurred in. It may be NULL, in which the
system guesses a name. The message argument is an error message encoded in
UTF-8. Additional arguments may be passed that become part of the condition
object that will be raised on the Scheme side: count indicates their number,
and the arguments (which must be of type s48 ref t) follow.

The s48 os error 2 function is like s48 error 2, except that the error mes-
sage is inferred from an OS error code (as in strerror). The s48 out of memory error 2

function signals that the system has run out of memory.
The following macros raise assertion violations if their argument does not

have the required type. s48 check boolean 2 raises an error if its argument is
neither #t or #f.

• void s48 check boolean 2(s48 call t, s48 ref t)

• void s48 check symbol 2(s48 call t, s48 ref t)

• void s48 check pair 2(s48 call t, s48 ref t)

• void s48 check string 2(s48 call t, s48 ref t)

• void s48 check integer 2(s48 call t, s48 ref t)

• void s48 check channel 2(s48 call t, s48 ref t)

• void s48 check byte vector 2(s48 call t, s48 ref t)

• void s48 check record 2(s48 call t, s48 ref t)

• void s48 check shared binding 2(s48 call t, s48 ref t)

8.10 External events

External code can push the occurrence of external events into the main Scheme 48
event loop and Scheme code can wait and act on external events.

On the Scheme side, the external events functionality consists of the following
functions from the structure primitives:

• (new-external-event-uid shared-binding-or-#f ) → uid
• (unregister-external-event-uid! uid)

And the following functions from the structure external-events:

• (register-condvar-for-external-event! uid condvar)
• (wait-for-external-event condvar)
• (new-external-event) → uid condvar

The function new-external-event-uid returns a fresh event identifier on every
call. When called with a shared binding instead of #f, new-external-event-uid
returns a named event identifier for permanent use. The function unregister-external-event-uid

unregisters the given event identifier.
External events use condition variables to synchronize the occurrence of

events, see section 7.5 for more information on condition variables. The function
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register-condvar-for-external-event registers a condition variable with an
event identifier. For convenience, the function new-external-event combines
new-external-event-uid and register-condvar-for-external-event and
returns a fresh event identifier and the corresponding condition variable.

The function wait-for-external-event blocks the caller (on the condi-
tion variable) until the Scheme main event loop receives an event notification
(by s48 note external event) of the event identifier that is registered with
the given condition variable (with register-condvar-for-external-event).
There is no guarantee that the caller of wait-for-external-event is unblocked
on every event notification, therefore the caller has to be prepared to handle mul-
tiple external events that have occurred and external code has to be prepared
to store multiple external events.

The following prototype is the interface on the external side:

• void s48 note external event(long)

External code has to collect external events and can use s48 note external event

to signal the occurrence of an external event to the main event loop. The ar-
gument to s48 note external event is an event identifier that was previously
registered on the Scheme side. Thus, external code has to obtain the event iden-
tifier from the Scheme side, either by passing the event identifier as an argument
to the external function that calls s48 note external event or by exporting
the Scheme value to C (see section 8.2.1).

Since the main event loop does not guarantee that every call to s48 note external event

causes the just occurred event to get handled immediately, external code has
to make sure that it can collect multiple external events (i.e. keep them in an ap-
propriate data structure). It is safe for external code to call s48 note external event

on every collected external event, though, even if older events have not been
handled yet.

8.10.1 Collecting external events in external code

External code has to be able to collect multiple events that have occurred.
Therefore, external code has to create the needed data structures to store the
information that is associated with the occurred event. Usually, external code
collects the events in a thread. An separate thread does not have an call argu-
ment, though, so it cannot create Scheme data structures. It must use C data
structures to collect the events, for example it can create a linked list of events.

Since the events are later handled on the Scheme side, the information as-
sociated with the event needs to be visible on the Scheme side, too. Therefore,
external code exports a function to Scheme that returns all current events as
Scheme objects (the function that returns the events knows about the current
call and thus can create Scheme objects). Scheme and external code might need
to share Scheme record types that represent the event information. Typically,
the function that returns the events converts the C event list into a Scheme
event list by preserving the original order in which the events arrived. Note
that the external list data structure that holds all events needs to be mutex
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locked on each access to preserve thread-safe manipulation of the data struc-
ture (the Scheme thread that processes events and the external thread that
collects events may access the data structures at the same time).

8.10.2 Handling external events in Scheme

If the sole occurrence of an event does not suffice for the program, the Scheme
side has to pull the information that is associated with an event from the C
side. Then, the Scheme side can handle the event data. For example, a typical
event loop on the Scheme side that waits on external events of an permanent
event type that an long-running external thread produces may look like this:

(define *external-event-uid*

(new-external-event-uid (lookup-imported-binding "my-event")))

(spawn-external-thread *external-event-uid*)

(let loop ()

(let ((condvar (make-condvar)))

(register-condvar-for-external-event! *external-event-uid* condvar)

(wait-for-external-event condvar)

(process-external-events! (get-external-events))

(loop)))

In the above example, the variable *external-event-uid* is defined as a per-
manent event identifier. On every pass through the loop, a fresh condition
variable is registered with the event identifier, then wait-for-external-event

blocks on the condition variable until external code signals the occurrence of a
matching event. Note that process-external-events! and get-external-events

need to be defined by the user. The user-written function get-external-events

returns all the events that the external code has collected since the last time
get-external-events was called; the user-written function process-external-events!

handles the events on the Scheme side.
When the Scheme side only waits for one single event, there is no need for

an event loop and an permanent event identifier. Then, new-external-event
is more convenient to use:

(call-with-values

(lambda () (new-external-event))

(lambda (uid condvar)

(spawn-external-thread uid)

(wait-for-external-event condvar)

(unregister-external-event-uid! uid)

...))

Here, new-external-event returns a fresh event identifier and a fresh condition
variable. The event identifier is passed to spawn-external-thread and the
condition variable is used to wait for the occurrence of the external event.
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External code uses s48 note external event to push the fact that an exter-
nal event occurred into the main event loop, then the Scheme code needs to pull
the actual event data from external code (in this example with get-external-events).
The user-written function spawn-external-thread runs the external code that
informs the Scheme side about the occurrence of external events. The event
identifier is passed as an argument. The external-event-related parts of the im-
plementation of spawn-external-thread in external code could look like this:

s48_ref_t

spawn_external_thread(s48_call_t call, s48_ref_t sch_event_uid) {

...

s48_note_external_event(s48_extract_long_2(call, sch_event_uid));

...

}

The event identifier is extracted from its Scheme representation and used to
inform the Scheme side about an occurrence of this specific event type.

8.11 Unsafe functions and macros

All of the C procedures and macros described above check that their arguments
have the appropriate types and that indexes are in range. The following proce-
dures and macros are identical to those described above, except that they do not
perform type and range checks. They are provided for the purpose of writing
more efficient code; their general use is not recommended.

• long s48 unsafe extract char 2(s48 call t, s48 ref t)

• s48 ref t s48 unsafe enter char 2(s48 call t, long)

• long s48 unsafe extract integer 2(s48 call t, s48 ref t)

• long s48 unsafe extract double 2(s48 call t, s48 ref t)

• long s48 unsafe extract fixnum 2(s48 call t, s48 ref t)

• s48 ref t s48 unsafe enter fixnum 2(s48 call t, long)

• s48 ref t s48 unsafe car 2(s48 call t, s48 ref t)

• s48 ref t s48 unsafe cdr 2(s48 call t, s48 ref t)

• void s48 unsafe set car 2(s48 call t, s48 ref t, s48 ref t)

• void s48 unsafe set cdr 2(s48 call t, s48 ref t, s48 ref t)

• long s48 unsafe vector length 2(s48 call t, s48 ref t)

• s48 ref t s48 unsafe vector ref 2(s48 call t, s48 ref t, long)

• void s48 unsafe vector set 2(s48 call t, s48 ref t, long, s48 ref t)

• long s48 unsafe string length 2(s48 call t, s48 ref t)

• char s48 unsafe string ref 2(s48 call t, s48 ref t, long)

• void s48 unsafe string set 2(s48 call t, s48 ref t, long, char)

• s48 ref t s48 unsafe symbol to string 2(s48 call t, s48 ref t)

• char * s48 unsafe extract byte vector 2(s48 call t, s48 ref t)
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• long s48 unsafe byte vector length 2(s48 call t, s48 ref t)

• char s48 unsafe byte vector ref 2(s48 call t, s48 ref t, long)

• void s48 unsafe byte vector set 2(s48 call t, s48 ref t, long, int)

Additionally to not performing type checks, the pointer returned by s48 unsafe extract byte vector 2

will likely become invalid when a garbage collection occurs. See section8.7.3 on
how the interface deals with byte vectors in a proper way.

• s48 ref t s48 unsafe shared binding ref 2(s48 call t, s48 ref t s b)

• int s48 unsafe shared binding p 2(s48 call t, x)

• int s48 unsafe shared binding is import p 2(s48 call t, s48 ref t s b)

• s48 ref t s48 unsafe shared binding name 2(s48 call t, s48 ref t s b)

• void s48 unsafe shared binding set 2(s48 call t, s48 ref t s b, s48 ref t value)

• s48 ref t s48 unsafe record type 2(s48 call t, s48 ref t)

• s48 ref t s48 unsafe record ref 2(s48 call t, s48 ref t, long)

• void s48 unsafe record set 2(s48 call t, s48 ref t, long, s48 ref t)

• type s48 unsafe extract value 2(s48 call t, s48 ref t, type)

• type * s48 unsafe extract value pointer 2(s48 call t, s48 ref t, type)

• void s48 unsafe set value 2(s48 call t, s48 ref t, type, value)

8.12 Converting external code to the new foreign-
function interface

It is straightforward to convert external code from the old foreign-function in-
terface to the new foreign-function interface:

• Converting functions:

– Add s48 call call as a first argument to every function prototype
that returns or accepts a s48 value.

– Replace every s48 value type in the function prototype and the body
with s48 ref t.

– Add call as the first argument to every function call that returns or
accepts a Scheme object.

– Remove all the GCPROTECT-related code (i.e. GCPROTECT and UNPROTECT).

• Converting global (static) variables:

– Replace s48 value type of the global variable with s48 ref t, ini-
tialize these variables with NULL.

– Set a real Scheme object in the initialization function of your code
with one of these alternatives:

∗ Use s48 make global ref to convert a s48 value to a global
reference. For details and an example see section 8.7.1.
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∗ Use s48 local to global ref to convert a local reference object
to a global one.

∗ If your global variable is supposed to hold a shared binding (e.g.
an record type binding), you can use s48 get imported binding 2

that returns a global reference.

– Replace S48 GC PROTECT GLOBAL with s48 local to global ref to
convert a local reference object to a global one.

– Use s48 free global ref to cleanup global references when appro-
priate.

If you add #define NO_OLD_FFI 1 just above #include <scheme48.h> in your
source code file, it will hide all the macros and prototype definitions of the old
foreign-function interface. That way you can make sure that you are only using
the new interface and the C compiler will remind you if you don’t.
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Chapter 9

Access to POSIX

This chapter describes Scheme 48’s interface to the POSIX C calls [1]. Scheme
versions of most of the functions in POSIX are provided. Both the interface and
implementation are new and are likely to change in future releases. Section 9.12
lists which Scheme functions call which C functions.

Scheme 48’s POSIX interface will likely change significantly in the future.
The implementation is new and may have significant bugs.

The POSIX bindings are available in several structures:

posix-processes fork, exec, and friends
posix-process-data information about processes
posix-files files and directories
posix-i/o operations on ports
posix-time time functions
posix-users users and groups
posix-regexps regular expression matching
posix-syslog POSIX logging facility
posix-errnos POSIX error codes
posix all of the above

Scheme 48’s POSIX interface differs from Scsh’s [11, 12] in several ways.
The interface here lacks Scsh’s high-level constructs and utilities, such as the
process notation, awk procedure, and parsing utilities. Scheme 48 uses distinct
types for some values that Scsh leaves as symbols or unboxed integers; these
include file types, file modes, and user and group ids. Many of the names and
other interface details are different, as well.

9.1 Process primitives

The procedures described in this section control the creation of processes and
the execution of programs. They are in the structures posix-process and
posix.
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9.1.1 Process creation and termination

• (fork) → process-id or #f

• (fork-and-forget thunk)

Fork creates a new child process and returns the child’s process-id in the parent
and #f in the child. Fork-and-forget calls thunk in a new process; no process-
id is returned. Fork-and-forget uses an intermediate process to avoid creating
a zombie process.

• (process-id? x) → boolean
• (process-id=? process-id0 process-id1) → boolean
• (process-id->integer process-id) → integer
• (integer->process-id integer) → process-id

Process-id? is a predicate for process-ids, process-id=? compares two to
see if they are the same, and process-id-uid returns the actual Unix id.
Process-id->integer and integer->process-id convert process ids to and
from integers.

• (process-id-exit-status process-id) → integer or #f

• (process-id-terminating-signal process-id) → signal or #f

• (wait-for-child-process process-id)

If a process terminates normally process-id-exit-status will return its exit
status. If the process is still running or was terminated by a signal then
process-id-exit-status will return #f. Similarly, if a child process was
terminated by a signal process-id-terminating-signal will return that sig-
nal and will return #f if the process is still running or terminated normally.
Wait-for-child-process blocks until the child process terminates. Scheme 48
may reap child processes before the user requests their exit status, but it does
not always do so.

• (exit status)

Terminates the current process with the integer status as its exit status.

9.1.2 Exec

• (exec program-name arg0 . . .)
• (exec-with-environment program-name env arg0 . . .)
• (exec-file filename arg0 . . .)
• (exec-file-with-environment filename env arg0 . . .)
• (exec-with-alias name lookup? maybe-env arguments)

All of these replace the current program with a new one. They differ in how
the new program is found, what its environment is, and what arguments it
is passed. Exec and exec-with-environment look up the new program in
the search path, while exec-file and exec-file-with-environment execute
a particular file. The environment is either inherited from the current pro-
cess (exec and exec-file) or given as an argument (...-with-environment).
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Program-name and filename and any argi should be os-string-thing arguments
(see section 5.15. Env should be a list of os-string-thing arguments of the form
"name=value". The first four procedures add their first argument, program-
name or filename, before the arg0 . . . arguments.

Exec-with-alias is an omnibus procedure that subsumes the other four.
Name is looked up in the search path if lookup? is true and is used as a filename
otherwise. Maybe-env is either a list of os-string-things for the environment of
the new program or #f in which case the new program inherits its environment
from the current one. Arguments should be a list of os-string-things; unlike with
the other four procedures, name is not added to this list (hence -with-alias).

9.2 Signals

There are two varieties of signals available, named and anonymous. A named
signal is one for which we have a symbolic name, such as kill or pipe. Anony-
mous signals, for which we only have the current operating system’s signal
number, have no meaning in other operating systems. Named signals preserve
their meaning in image files. Not all named signals are available from all OS’s
and there may be multiple names for a single OS signal number.

• (signal signal-name) → signal syntax
• (name->signal symbol) → signal or #f

• (integer->signal integer) → signal
• (signal? x) → boolean
• (signal-name signal) → symbol or #f

• (signal-os-number signal) → integer
• (signal=? signal0 signal1) → boolean

The syntax signal returns a (named) signal associated with signal-name. Name->signal
returns a (named) signal or #f if the the signal name is not supported by the
operating system. The signal returned by integer->signal is a named signal
if integer corresponds to a named signal in the current operating system; oth-
erwise it returns an anonymous signal. Signal-name returns a symbol if signal
is named and #f if it is anonymous. Signal=? returns #t if signal0 and signal1
have the same operating system number and #f if they do not.

9.2.1 POSIX signals

The following lists the names of the POSIX signals.
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abrt abort - abnormal termination (as by abort())
alrm alarm - timeout signal (as by alarm())
fpe floating point exception
hup hangup - hangup on controlling terminal or death of controlling process
ill illegal instruction
int interrupt - interaction attention
kill kill - termination signal, cannot be caught or ignored
pipe pipe - write on a pipe with no readers
quit quit - interaction termination
segv segmentation violation - invalid memory reference
term termination - termination signal
usr1 user1 - for use by applications
usr2 user2 - for use by applications
chld child - child process stopped or terminated
cont continue - continue if stopped
stop stop - cannot be caught or ignored
tstp interactive stop
ttin read from control terminal attempted by background process
ttou write to control terminal attempted by background process
bus bus error - access to undefined portion of memory

9.2.2 Other signals

The following lists the names of the non-POSIX signals that the system is
currently aware of.

trap trace or breakpoint trap
iot IOT trap - a synonym for ABRT
emt

sys bad argument to routine (SVID)
stkflt stack fault on coprocessor
urg urgent condition on socket (4.2 BSD)
io I/O now possible (4.2 BSD)
poll A synonym for SIGIO (System V)
cld A synonym for SIGCHLD
xcpu CPU time limit exceeded (4.2 BSD)
xfsz File size limit exceeded (4.2 BSD)
vtalrm Virtual alarm clock (4.2 BSD)
prof Profile alarm clock
pwr Power failure (System V)
info A synonym for SIGPWR
lost File lock lost
winch Window resize signal (4.3 BSD, Sun)
unused Unused signal
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9.2.3 Sending signals

• (signal-process process-id signal)

Send signal to the process corresponding to process-id .

9.2.4 Receiving signals

Signals received by the Scheme process can be obtained via one or more signal-
queues. Each signal queue has a list of monitored signals and a queue of received
signals that have yet to be read from the signal-queue. When the Scheme process
receives a signal that signal is added to the received-signal queues of all signal-
queues which are currently monitoring that particular signal.

• (make-signal-queue signals) → signal-queue
• (signal-queue? x) → boolean
• (signal-queue-monitored-signals signal-queue) → list of signals
• (dequeue-signal! signal-queue) → signal
• (maybe-dequeue-signal! signal-queue) → signal or #f

Make-signal-queue returns a new signal-queue that will monitor the signals in
the list signals. Signal-queue? is a predicate for signal queues. Signal-queue-monitored-signals
returns a list of the signals currently monitored by signal-queue. Dequeue-signal!
and maybe-dequeue-signal both return the next received-but-unread signal
from signal-queue. If signal-queue’s queue of signals is empty dequeue-signal!

blocks until an appropriate signal is received. Maybe-dequeue-signal! does
not block; it returns #f instead.

There is a bug in the current system that causes an erroneous deadlock error
if threads are blocked waiting for signals and no other threads are available to
run. A work around is to create a thread that sleeps for a long time, which
prevents any deadlock errors (including real ones):

> ,open threads

> (spawn (lambda ()

; Sleep for a year

(sleep (* 1000 60 60 24 365))))

• (add-signal-queue-signal! signal-queue signal)
• (remove-signal-queue-signal! signal-queue signal)

These two procedures can be used to add or remove signals from a signal-
queue’s list of monitored signals. When a signal is removed from a signal-
queue’s list of monitored signals any occurances of the signal are removed from
that signal-queue’s pending signals. In other words, dequeue-signal! and
maybe-dequeue-signal! will only return signals that are currently on the
signal-queue’s list of signals.
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9.3 Process environment

These are in structures posix-process-data and posix.

9.3.1 Process identification

• (get-process-id) → process-id
• (get-parent-process-id) → process-id

These return the process ids of the current process and its parent. See sec-
tion 9.1.1 for operations on process ids.

• (get-user-id) → user-id
• (get-effective-user-id) → user-id
• (set-user-id! user-id)
• (set-effective-user-id! user-id)

• (get-group-id) → group-id
• (get-effective-group-id) → group-id
• (set-group-id! group-id)
• (set-effective-group-id! group-id)

Every process has both the original and effective user id and group id. The
effective values may be set, but the original ones can only be set if the process
has appropriate privelages.

• (get-groups) → group-ids
• (get-login-name) → os-string

Get-groups returns a list of the supplementary groups of the current process.
Get-login-name returns a user name for the current process.

9.3.2 Environment variables

• (lookup-environment-variable os-string-thing) → os-string or #f

• (set-environment-variable! name value)
• (environment-alist) → alist

Lookup-environment-variable looks up its argument in the environment list
and returns the corresponding value or #f if there is none. Set-environment-variable!
sets the value of name in the environment list to value. If name is not already
an environment variable, it’s created. If it already exists, its value is overwrit-
ten with value. Both arguments must be os-string-things. Environment-alist
returns the entire environment as a list of (name-os-string . value-os-string)
pairs.

9.4 Users and groups

User-ids and group-ids are boxed integers representing Unix users and groups.
The procedures in this section are in structures posix-users and posix.
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• (user-id? x) → boolean
• (user-id=? user-id0 user-id1) → boolean
• (user-id->integer user-id) → integer
• (integer->user-id integer) → user-id

• (group-id? x) → boolean
• (group-id=? group-id0 group-id1) → boolean
• (group-id->integer group-id) → integer
• (integer->group-id integer) → group-id

User-ids and group-ids have their own own predicates and comparison, boxing,
and unboxing functions.

• (user-id->user-info user-id) → user-info
• (name->user-info os-string) → user-info

These return the user info for a user identified by user-id or name.

• (user-info? x) → boolean
• (user-info-name user-info) → os-string
• (user-info-id user-info) → user-id
• (user-info-group user-info) → group-id
• (user-info-home-directory user-info) → os-string
• (user-info-shell user-info) → os-string

A user-info contains information about a user. Available are the user’s name,
id, group, home directory, and shell.

• (group-id->group-info group-id) → group-info
• (name->group-info os-string) → group-info

These return the group info for a group identified by group-id or name.

• (group-info? x) → boolean
• (group-info-name group-info) → os-string
• (group-info-id group-info) → group-id
• (group-info-members group-info) → user-ids

A group-info contains information about a group. Available are the group’s
name, id, and a list of members.

9.5 OS and machine identification

These procedures return strings that are supposed to identify the current OS
and machine. The POSIX standard does not indicate the format of the strings.
The procedures are in structures posix-platform-names and posix.

• (os-name) → string
• (os-node-name) → string
• (os-release-name) → string
• (os-version-name) → string
• (machine-name) → string
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9.6 Files and directories

These procedures are in structures posix-files and posix.

9.6.1 Directory streams

Directory streams are like input ports, with each read operation returning the
next name in the directory.

• (open-directory-stream name) → directory
• (directory-stream? x) → boolean
• (read-directory-stream directory) → name or #f

• (close-directory-stream directory)

Open-directory-stream opens a new directory stream. Directory-stream? is
a predicate that recognizes directory streams. Read-directory-stream returns
the next name in the directory or #f if all names have been read. Close-directory-stream
closes a directory stream.

• (list-directory name) → list of os-strings

This is the obvious utility; it returns a list of the names in directory name.

9.6.2 Working directory

• (working-directory) → os-string
• (set-working-directory! os-string-thing)

These return and set the working directory.

9.6.3 File creation and removal

• (open-file path file-options) → port
• (open-file path file-options file-mode) → port

Open-file opens a port to the file named by path, which must be a os-string-thing
argument. The file-options argument determines various aspects of the returned
port. The optional file-mode argument is used only if the file to be opened does
not already exist. The returned port is an input port if file-options includes
read-only; otherwise it returns an output port. Dup-switching-mode can be
used to open an input port for output ports opened with the read/write option.

• (file-options file-option-name ...) → file-options syntax
• (file-options-on? file-options file-options) → boolean
• (file-options-union file-options file-options) → file-options

The syntax file-options returns a file-option with the indicated options set.
File-options-on? returns true if its first argument includes all of the options
listed in the second argument. File-options-union returns a file-options ar-
gument containing exactly all of the options listed in either argument. The
following file options may be used with open-file.
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create create file if it does not already exist; a file-
mode argument is required with this option

exclusive an error will be raised if this option and create

are both set and the file already exists
no-controlling-tty if path is a terminal device this option causes

the terminal to not become the controlling ter-
minal of the process

truncate file is truncated
append writes are appended to existing contents
nonblocking read and write operations do not block
read-only port may not be written
read-write file descriptor may be read or written
write-only port may not be read

Only one of the last three options may be used. If read-write is specified, an
output port is returned.

For example

(open-file "some-file.txt"

(file-options create write-only)

(file-mode read owner-write))

returns an output port that writes to a newly-created file that can be read by
anyone and written only by the owner. Once the file exists,

(open-file "some-file.txt"

(file-options append write-only))

will open an output port that appends to the file.
The append and nonblocking options and the read/write nature of the port

can be read using i/o-flags. The append and nonblocking options can be set
using set-i/o-flags!.

To keep port operations from blocking the Scheme 48 process, output ports
are set to be nonblocking at the time of creation (input ports are managed using
select()). You can use set-i/o-flags! to make an output port blocking,
for example just before a fork, but care should be exercised. The Scheme 48
runtime code may get confused if an I/O operation blocks.

• (set-file-creation-mask! file-mode)

Sets the file creation mask to be file-mode. Bits set in file-mode are cleared in
the modes of any files or directories created by the current process.

• (link existing new)

Both existing and new must be os-string-thing arguments. Link makes path
new be a new link to the file pointed to by path existing . The two paths must
be in the same file system.

• (make-directory path file-mode)
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• (make-fifo path file-mode)

These two procedures make new directories and fifo files. In both cases, path
must be a os-string-thing argument.

• (unlink path)
• (remove-directory path)
• (rename old-path new-path)

Path, old-path and new-path must all be os-string-thing arguments. Unlink

removes the link indicated by path. Remove-directory removes the indicated
(empty) directory. Rename moves the file pointed to by old-path to the location
pointed to by new-path (the two paths must be in the same file system). Any
other links to the file remain unchanged.

• (accessible? path access-mode . more-modes) → boolean
• (access-mode mode-name) → access-mode syntax

Accessible? returns true if path (which must be a os-string-thing argument)
is a file that can be accessed in the listed mode. If more than one mode is
specified accessible? returns true if all of the specified modes are permitted.
The mode-names are: read, write, execute, exists.

9.6.4 File information

• (get-file-info path) → file-info
• (get-file/link-info name) → file-info
• (get-port-info fd-port) → file-info

Get-file-info and get-file/link-info both return a file info record for the
file named by path, which must be a os-string-thing argument. Get-file-info
follows symbolic links while get-file/link-info does not. Get-port-info

returns a file info record for the file which port reads from or writes to. An error
is raised if fd-port does not read from or write to a file descriptor.

• (file-info? x) → boolean
• (file-info-name file-info) → os-string

File-info? is a predicate for file-info records. File-info-name is the name
which was used to get file-info, either as passed to get-file-info or get-file/link-info,
or used to open the port passed to get-port-info.

• (file-info-type file-info) → file-type
• (file-type? x) → boolean
• (file-type-name file-type) → symbol
• (file-type type) → file-type syntax

File-info-type returns the type of the file, as a file-type object File types may
be compared using eq?. The valid file types are:
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regular

directory

character-device

block-device

fifo

symbolic-link

socket

other

Symbolic-link and socket are not required by POSIX.

• (file-info-device file-info) → integer
• (file-info-inode file-info) → integer

The device and inode numbers uniquely determine a file.

• (file-info-link-count file-info) → integer
• (file-info-size file-info) → integer

These return the number of links to a file and the file size in bytes. The size is
only meaningful for regular files.

• (file-info-owner file-info) → user-id
• (file-info-group file-info) → group-id
• (file-info-mode file-info) → file-mode

These return the owner, group, and access mode of a file.

• (file-info-last-access file-info) → time
• (file-info-last-modification file-info) → time
• (file-info-last-status-change file-info) → time

These return the time the file was last read, modified, or had its status modified.

9.6.5 File modes

A file mode is a boxed integer representing a file protection mask.

• (file-mode permission-name ...) → file-mode syntax
• (file-mode? x) → boolean
• (file-mode+ file-mode . . .) → file-mode
• (file-mode- file-mode0 file-mode1) → file-mode

File-mode is syntax for creating file modes. The mode-names are listed below.
File-mode? is a predicate for file modes. File-mode+ returns a mode that
contains all of permissions of its arguments. File-mode- returns a mode that
has all of the permissions of file-mode0 that are not in file-mode1 .

• (file-mode=? file-mode0 file-mode1) → boolean
• (file-mode<=? file-mode0 file-mode1) → boolean
• (file-mode>=? file-mode0 file-mode1) → boolean
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File-mode=? returns true if the two modes are exactly the same. File-mode<=?
returns true if file-mode0 has a subset of the permissions of file-mode1 . File-mode>=?
is file-mode<=? with the arguments reversed.

• (file-mode->integer file-mode) → integer
• (integer->file-mode integer) → file-mode

Integer->file-mode and file-mode->integer translate file modes to and
from the classic Unix file mode masks. These may not be the masks used
by the underlying OS.

Permission name Bit mask
set-uid #o4000 set user id when executing
set-gid #o2000 set group id when executing
owner-read #o0400 read by owner
owner-write #o0200 write by owner
owner-exec #o0100 execute (or search) by owner
group-read #o0040 read by group
group-write #o0020 write by group
group-exec #o0010 execute (or search) by group
other-read #o0004 read by others
other-write #o0002 write by others
other-exec #o0001 execute (or search) by others

Names for sets of permissions
owner #o0700 read, write, and execute by owner
group #o0070 read, write, and execute by group
other #o0007 read, write, and execute by others
read #o0444 read by anyone
write #o0222 write by anyone
exec #o0111 execute by anyone
all #o0777 anything by anyone

9.6.6 Symbolic links

• (create-symbolic-link path1 path2)

This creates a symbolic link at path2 that contains path1 . Path1 and path2
must be os-string-thing arguments.

• (read-symbolic-link path) → os-string

This returns contents of the symbolic link at path. Path must be an os-string-thing
argument.

9.7 Time and Date

These procedures are in structures posix-time and posix.
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9.7.1 Time

• (make-time integer) → time
• (current-time) → time
• (time? x) → boolean
• (time-seconds time) → integer

A time record contains an integer that represents time as the number of sec-
ond since the Unix epoch (00:00:00 GMT, January 1, 1970). Make-time and
current-time return times, with make-time’s using its argument while current-time’s
has the current time. Time? is a predicate that recognizes times and time-seconds

returns the number of seconds time represents.

• (time=? time time) → boolean
• (time<? time time) → boolean
• (time<=? time time) → boolean
• (time>? time time) → boolean
• (time>=? time time) → boolean

These perform various comparison operations on the times.

• (time->string time) → string

Time->string returns a string representation of time in the locale’s version of
the following form.

"Wed Jun 30 21:49:08 1993

"

9.7.2 Date

A date is a time specification relative to a specific but implicit time zone, broken
out into the familar year-month-day-hour-minute-second format.

• (make-date second minute hour month-day month year week-day year-day dst) → date
• (date? x) → boolean
• (date-second date) → second
• (date-minute date) → minute
• (date-hour date) → hour
• (date-month-day date) → month-day
• (date-month date) → month
• (date-year date) → year
• (date-week-day date) → week-day
• (date-year-day date) → year-day
• (date-date-dst date) → dst

These are the constructor, predicate and corresponding accessors for date ob-
jects. The meaning of the various field types are as follows:
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seconds seconds (0–60)
minutes minutes (0–59)
hour hours (0–23)
month-day day of month (1–31)
mon month of year (0–11)
year year since 1900
week-day day of week (Sunday = 0)
year-day day of year (0–365)
dst is summer time in effect? #t, #f or unspecific

• (date->string date) → string

returns a string representation of date in the locale’s version of the following
form:

"Wed Jun 30 21:49:08 1993

"

• (time->utc-date time) → date
• (time->local-date time) → date

These convert a time object into a date object; the first does this relative to the
UTC time zone, the second relative to the current timezone setting.

• (date->time date) → time

This converts a date object into a time object relative to the current timezone
setting.

• (format-date string date) → string

This formats a date into a string, according to the format specification in the
first argument. The format specification is according to the specification of the
C strftime function:

%a is replaced by the locale’s abbreviated weekday name.
%A is replaced by the locale’s full weekday name.
%b is replaced by the locale’s abbreviated month name.
%B is replaced by the locale’s full month name.
%c is replaced by the locale’s appropriate date and time representation.
%C is replaced by the year divided by 100 and truncated to an integer, as a

decimal number (00–99).
%d is replaced by the day of the month as a decimal number (01–31).
%D is equivalent to “%m/%d/%y”.
%e is replaced by the day of the month as a decimal number (1–31); a single

digit is preceded by a space.
%F is equivalent to “%Y-%m-%d” (the ISO 8601 date format).
%g is replaced by the last 2 digits of the week-based year (see below) as a

decimal number (00–99).
%G is replaced by the week-based year (see below) as a decimal number

(e.g., 1997).
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%h is equivalent to “%b”.
%H is replaced by the hour (24-hour clock) as a decimal number (00–23).
%I is replaced by the hour (12-hour clock) as a decimal number (01–12).
%j is replaced by the day of the year as a decimal number (001–366).
%m is replaced by the month as a decimal number (01–12).
%M is replaced by the minute as a decimal number (00–59).
%n is replaced by a new-line character.
%p is replaced by the locale’s equivalent of the AM/PM designations asso-

ciated with a 12-hour clock.
%r is replaced by the locale’s 12-hour clock time.
%R is equivalent to “%H:%M”.
%S is replaced by the second as a decimal number (00–60).
%t is replaced by a horizontal-tab character.
%T is equivalent to “%H:%M:%S” (the ISO 8601 time format).
%u is replaced by the ISO 8601 weekday as a decimal number (1–7), where

Monday is 1.
%U is replaced by the week number of the year (the first Sunday as the first

day of week 1) as a decimal number (00–53).
%V is replaced by the ISO 8601 week number (see below) as a decimal

number (01–53).
%w is replaced by the weekday as a decimal number (0–6), where Sunday is

0.
%W is replaced by the week number of the year (the first Monday as the first

day of week 1) as a decimal number (00–53).
%x is replaced by the locale’s appropriate date representation.
%X is replaced by the locale’s appropriate time representation.
%y is replaced by the last 2 digits of the year as a decimal number (00–99).
%Y is replaced by the year as a decimal number (e.g., 1997).
%z is replaced by the offset from UTC in the ISO 8601 format “-0430”

(meaning 4 hours 30 minutes behind UTC, west of Greenwich), or by
no characters if no time zone is determinable.

%Z is replaced by the locale’s time zone name or abbreviation, or by no
characters if no time zone is determinable.

%% is replaced by %.

9.8 I/O

These procedures are in structures posix-i/o and posix.

• (open-pipe) → input-port + output-port

Open-pipe creates a new pipe and returns the two ends as an input port and
an output port.

A file descriptor port (or fd-port) is a port that reads to or writes from an OS
file descriptor. Fd-ports are returned by open-input-file, open-output-file,
open-file, open-pipe, and other procedures.
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• (fd-port? port) → boolean
• (port->fd port) → integer or #f

Fd-port? returns true if its argument is an fd-port. Port->fd returns the file
descriptor associated with or #f if port is not an fd-port.

• (remap-file-descriptors fd-spec . . .)

Remap-file-descriptors reassigns file descriptors to ports. The fd-specs in-
dicate which port is to be mapped to each file descriptor: the first gets file
descriptor 0, the second gets 1, and so forth. A fd-spec is either a port that
reads from or writes to a file descriptor, or #f, with #f indicating that the cor-
responding file descriptor is not used. Any open ports not listed are marked
‘close-on-exec’. The same port may be moved to multiple new file descriptors.

For example,

(remap-file-descriptors (current-output-port)

#f

(current-input-port))

moves the current output port to file descriptor 0 and the current input port to
file descriptor 2.

• (dup fd-port) → fd-port
• (dup-switching-mode fd-port) → fd-port
• (dup2 fd-port file-descriptor) → fd-port

These change fd-port ’s file descriptor and return a new port that uses ports’s
old file descriptor. Dup uses the lowest unused file descriptor and dup2 uses the
one provided. Dup-switching-mode is the same as dup except that the returned
port is an input port if the argument was an output port and vice versa. If any
existing port uses the file descriptor passed to dup2, that port is closed.

• (close-all-but port . . .)

Close-all-but closes all file descriptors whose associated ports are not passed
to it as arguments.

• (close-on-exec? port) → boolean
• (set-close-on-exec?! port boolean)

Close-on-exec? returns true if port will be closed when a new program is
exec’ed. Set-close-on-exec?! sets port’s close-on-exec flag.

• (i/o-flags port) → file-options
• (set-i/o-flags! port file-options)

These two procedures read and write various options for port. The options that
can be read are append, nonblocking, read-only, write-only, and read/write.
Only the append and nonblocking can be written.

• (port-is-a-terminal? port) → boolean
• (port-terminal-name port) → string

Port-is-a-terminal? returns true if port has an underlying file descriptor
that is associated with a terminal. For such ports port-terminal-name returns
the name of the terminal, for all others it returns #f.
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9.9 Regular expressions

The procedures in this section provide access to POSIX regular expression
matching. The regular expression syntax and semantics are far too complex
to be described here. Due to limitations in the underlying facility, only Latin-1
strings are guaranteed to work here—on some platforms, only ASCII may func-
tion correctly. Moreover, because the C interface uses zero bytes for marking
the ends of strings, patterns and strings that contain zero bytes will not work
correctly.

These procedures are in structures posix-regexps and posix.
An abstract data type for creating POSIX regular expressions is described

in section 5.21.

• (make-regexp string . regexp-options) → regexp
• (regexp-option option-name) → regexp-option syntax

Make-regexp makes a new regular expression, using string as the pattern. The
possible option names are:

extended use the extended patterns
ignore-case ignore case when matching
submatches report submatches
newline treat newlines specially

The regular expression is not compiled until it matched against a string, so
any errors in the pattern string will not be reported until that point.

• (regexp? x) → boolean

This is a predicate for regular expressions.

• (regexp-match regexp string start submatches? starts-line? ends-line?)
→ boolean or list of matches

• (match? x) → boolean
• (match-start match) → integer
• (match-end match) → integer

Regexp-match matches the regular expression against the characters in string ,
starting at position start . If the string does not match the regular expression,
regexp-match returns #f. If the string does match, then a list of match records
is returned if submatches? is true, or #t is returned if it is not. Each match
record contains the index of the character at the beginning of the match and
one more than the index of the character at the end. The first match record
gives the location of the substring that matched regexp. If the pattern in regexp
contained submatches, then the results of these are returned in order, with a
match records reporting submatches that succeeded and #f in place of those
that did not.

Starts-line? should be true if string starts at the beginning of a line and
ends-line? should be true if it ends one.
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9.10 Syslog facility

The procedures in this section provide access to the POSIX syslog facility. The
functionality is in a structure called posix-syslog. The Scheme 48 interface to
the syslog facility differs significantly from that of the Unix library functionality
in order to support multiple simultaneous connections to the syslog facility.

Log messages carry a variety of parameters beside the text of the message
itself, namely a set of options controlling the output format and destination, the
facility identifying the class of programs the message is coming from, an identifier
specifying the concrete program, and the level identifying the importance of the
message. Moreover, a log mask can prevent messages at certain levels to be
actually sent to the syslog daemon.

Log options

A log option specifies details of the I/O behavior of the syslog facility. A sys-
log option is an element of a finite type (see Section 5.10) constructed by the
syslog-option macro. The syslog facility works with sets of options which are
represented as enum sets (see Section 5.11).

• (syslog-option option-name) → option syntax
• (syslog-option? x) → boolean
• (make-syslog-options list) → options
• (syslog-options option-name ...) → options syntax
• (syslog-options? x) → boolean

Syslog-option constructs a log option from the name of an option. (The
possible names are listed below.) Syslog-option? is a predicate for log options.
Options are comparable using eq?. Make-syslog-options constructs a set of
options from a list of options. Syslog-options is a macro which expands into
an expression returning a set of options from names. Syslog-options? is a
predicate for sets of options.

Here is a list of possible names of syslog options:

console If syslog cannot pass the message to syslogd it will attempt to write
the message to the console.

delay Delay opening the connection to syslogd immediately until the first mes-
sage is logged.

no-delay Open the connection to syslogd immediately. Normally the open is
delayed until the first message is logged. Useful for programs that need
to manage the order in which file descriptors are allocated.

NOTA BENE: The delay and no-delay options are included for com-
pleteness, but do not have the expected effect in the present Scheme inter-
face: Because the Scheme interface has to multiplex multiple simultaneous
connections to the syslog facility over a single one, open and close opera-
tions on that facility happen at unpredictable times.
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log-pid Log the process id with each message: useful for identifying instanti-
ations of daemons.

no-wait Do not wait for child processes.

Log facilities

A log facility identifies the originator of a log message from a finite set known
to the system. Each originator is identified by a name:

• (syslog-facility facility-name) → facility syntax
• (syslog-facility? x) → boolean

Syslog-facility is macro that expands into an expression returning a facility
for a given name. Syslog-facility? is a predicate for facilities. Facilities are
comparable via eq?.

Here is a list of possible names of syslog facilities:

authorization The authorization system: login, su, getty, etc.

cron The cron daemon.

daemon System daemons, such as routed, that are not provided for explicitly
by other facilities.

kernel Messages generated by the kernel.

lpr The line printer spooling system: lpr, lpc, lpd, etc.

mail The mail system.

news The network news system.

user Messages generated by random user processes.

uucp The uucp system.

local0 local1 local2 local3 local4 local5 local6 local7 Reserved for lo-
cal use.

Log levels

A log level identifies the importance of a message from a fixed set of possible
levels.

• (syslog-level level-name) → level syntax
• (syslog-level? x) → boolean

Syslog-level is macro that expands into an expression returning a facility for a
given name. Syslog-level? is a predicate for facilities. Levels are comparable
via eq?.

Here is a list of possible names of syslog levels:

147



emergency A panic condition. This is normally broadcast to all users.

alert A condition that should be corrected immediately, such as a corrupted
system database.

critical Critical conditions, e.g., hard device errors.

error Errors.

warning Warning messages.

notice Conditions that are not error conditions, but should possibly be handled
specially.

info Informational messages.

debug Messages that contain information normally of use only when debugging
a program.

Log masks

A log masks can mask out log messages at a set of levels. A log mask is an
enum set of log levels.

• (make-syslog-mask list) → mask
• (syslog-mask level-name ...) → mask syntax
• syslog-mask-all mask
• (syslog-mask-upto level) → mask
• (syslog-mask? x) → boolean

Make-syslog-mask constructs a mask from a list of levels. Syslog-mask is a
macro which constructs a mask from names of levels. Syslog-mask-all is a pre-
defined log mask containing all levels. Syslog-mask-upto returns a mask con-
sisting of all levels up to and including a certain level, starting with emergency.

Logging

Scheme 48 dynamically maintains implicit connections to the syslog facility
specifying a current identifier, current options, a current facility and a current
log mask. Every thread maintains it own implicit connection to syslog. Note
that the connection is not implicitly preserved across a spawn.

• (with-syslog-destination string options facility mask thunk) → value

With-syslog-destination dynamically binds parameters of the implicit con-
nection to the syslog facility and runs thunk within those parameter bindings,
returning what thunk returns. Each of the parameters may be #f in which case
the previous values will be used.

• (syslog level message)
• (syslog level message string)
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• (syslog level message string options)
• (syslog level message string options syslog-facility)
• (syslog level message channel)

Syslog actually logs a message. Each of the parameters of the implicit connec-
tion (except for the log mask) can be explicitly specified as well for the current
call to syslog, overriding the parameters of the channel. The parameters revert
to their original values after the call.

The final form specifies the destination of the log message as a channel; see
the next section.

Syslog channels

These procedures allow direct manipulation of syslog channels, the objects that
represent connections to the syslog facility. Note that it is not necessary to
explicitly open a syslog channel to do logging.

• (open-syslog-channelstring options facility mask) → channel
• (close-syslog-channelchannel)
• (with-syslog-destination channel thunk) → value

Open-syslog-channel and close-syslog-channel create and destroy a con-
nection to the syslog facility, respectively. The specified form of calling syslog

logs to the specified channel.
With-syslog-channel dynamically binds parameters of the implicit connec-

tion to the syslog facility to those specified in channel and runs thunk within
those parameter bindings, returning what thunk returns.

9.11 Error codes

POSIX functions report the nature of an error via system error numbers—
OS-specific integers that encode a variety of different error situations. At the
Scheme level, error numbers are represented as errnos, objects that specify a
name for the error sitation. Errnos are definted in the structures posix-errnos
and posix.

Currently, the system reports such error situations by raising exceptions with
condition type &os-error. The &os-error condition type has a field code that
contains the system error number.

There are two varieties of errnos available, named and anonymous. A named
errno is one for which we have a symbolic name, such as fault or intr. Anony-
mous errnos, for which we only have the current operating system’s errno num-
ber, have no meaning in other operating systems. Named errnos preserve their
meaning in image files. Not all named errnos are available from all OS’s and
there may be multiple names for a single OS errno number.

• (errno errno-name) → errno syntax
• (name->errno symbol) → errno or #f
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• (integer->errno integer) → errno
• (errno? x) → boolean
• (errno-name errno) → symbol or #f

• (errno-os-number errno) → integer
• (errno=? errno0 errno1) → boolean

The syntax errno returns a (named) errno associated with errno-name. Name->errno
returns a (named) errno or #f if the the errno name is not supported by the
operating system. The errno returned by integer->errno is a named errno if
integer corresponds to a named errno in the current operating system; otherwise
it returns an anonymous errno. Errno-name returns a symbol if errno is named
and #f if it is anonymous. Errno=? returns #t if errno0 and errno1 have the
same operating system number and #f if they do not.

9.11.1 POSIX errnos

The following lists the names of the POSIX errnos.

toobig Argument list too long.
acces Permission denied.
addrinuse Address in use.
addrnotavail Address not available.
afnosupport Address family not supported.
again Resource unavailable, try again.
already Connection already in progress.
badf Bad file descriptor.
badmsg Bad message.
busy Device or resource busy.
canceled Operation canceled.
child No child processes.
connaborted Connection aborted.
connrefused Connection refused.
connreset Connection reset.
deadlk Resource deadlock would occur.
destaddrreq Destination address required.
dom Mathematics argument out of domain of func-

tion.
dquot Reserved.
exist File exists.
fault Bad address.
fbig File too large.
hostunreach Host is unreachable.
idrm Identifier removed.
ilseq Illegal byte sequence.
inprogress Operation in progress.
intr Interrupted function.
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inval Invalid argument.
io I/O error.
isconn Socket is connected.
isdir Is a directory.
loop Too many levels of symbolic links.
mfile Too many open files.
mlink Too many links.
msgsize Message too large.
multihop Reserved.
nametoolong Filename too long.
netdown Network is down.
netreset Connection aborted by network.
netunreach Network unreachable.
nfile Too many files open in system.
nobufs No buffer space available.
nodata No message is available on the STREAM head

read queue.
nodev No such device.
noent No such file or directory.
noexec Executable file format error.
nolck No locks available.
nolink Reserved.
nomem Not enough space.
nomsg No message of the desired type.
noprotoopt Protocol not available.
nospc No space left on device.
nosr No STREAM resources.
nostr Not a STREAM.
nosys Function not supported.
notconn The socket is not connected.
notdir Not a directory.
notempty Directory not empty.
notsock Not a socket.
notsup Not supported.
notty Inappropriate I/O control operation.
nxio No such device or address.
opnotsupp Operation not supported on socket.
overflow Value too large to be stored in data type.
perm Operation not permitted.
pipe Broken pipe.
proto Protocol error.
protonosupport Protocol not supported.
prototype Protocol wrong type for socket.
range Result too large.
rofs Read-only file system.
spipe Invalid seek.
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srch No such process.
stale Reserved.
time Stream ioctl() timeout.
timedout Connection timed out.
txtbsy Text file busy.
wouldblock Operation would block.
xdev Cross-device link.

9.12 C to Scheme correspondence

The following table lists the Scheme procedures that correspond to particular
C procedures. Not all of the Scheme procedures listed are part of the POSIX
interface.

C procedure Scheme procedure(s)
access accessible?

asctime date->string

chdir set-working-directory!

close close-input-port, close-output-port,

close-channel, close-socket

closedir close-directory-stream

creat open-file

ctime time->string

dup dup, dup-switching-mode

dup2 dup2

exec[l|v][e|p|ε] exec, exec-with-environment,

exec-file, exec-file-with-environment,

exec-with-alias

exit exit

fcntl io-flags, set-io-flags!,

close-on-exec, set-close-on-exec!

fork fork, fork-and-forget

fstat get-port-info

getcwd working-directory

getegid get-effective-group-id

getenv lookup-environment-variable,

environment-alist

geteuid get-effective-user-id

getgid get-group-id

getgroups get-groups

getlogin get-login-name

getpid get-process-id

getppid get-parent-process-id
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C procedure Scheme procedure(s)
getuid get-user-id

gmtime time->local-date

isatty port-is-a-terminal?

link link

localtime time->utc-date

lstat get-file/link-info

mkdir make-directory

mkfifo make-fifo

mktime date->time

open open-file

opendir open-directory-stream

pipe open-pipe

read read-char, read-block

readdir read-directory-stream

readlink read-symbolic-link

rename rename

rmdir remove-directory

setgid set-group-id!

setegid set-effective-group-id!

setuid set-user-id!

seteuid set-effective-user-id!

stat get-file-info

strftime format-date

symlink create-symbolic-link

syslog syslog

time current-time

ttyname port-terminal-name

umask set-file-creation-mask!

uname os-name, os-node-name,

os-release-name, os-version-name,

machine-name

unlink unlink

waitpid wait-for-child-process

write write-char, write-block
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get-file-info, 138
get-file/link-info, 138
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group-id?, 135
group-info-id, 135
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group-info-name, 135
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guard, 99
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have-system?, 54

i/o-flags, 144
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import-definition, 108
import-dynamic-externals, 110
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integer->signal, 131
integer->user-id, 135
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jar-put!, 101
jar-take, 102
jar-take-rv, 102
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kill-thread!, 92
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let-fluid, 52
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limit-output, 51
link, 137
list->queue, 41
list-delete-neighbor-dups, 69, 73
list-delete-neighbor-dups!, 73
list-directory, 136
list-merge, 68, 71
list-merge!, 68, 71
list-merge-sort, 71
list-merge-sort!, 71
list-sort, 68
list-sort!, 68
list-sorted?, 68, 71
list-stable-sort, 68
list-stable-sort!, 68
load-dynamic-externals, 110
lock?, 97
lookup-environment-variable, 134
lookup-exported-binding, 108
lookup-imported-binding, 107

machine-name, 135
make-array, 43
make-byte-vector, 40
make-cell, 41
make-channel, 100
make-condvar, 96
make-date, 141
make-directory, 137
make-empty-profile-data, 56
make-fifo, 138
make-fluid, 52
make-integer-table, 50
make-jar, 101
make-lock, 97
make-os-string, 53
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make-proposal, 96
make-queue, 41
make-record, 45
make-record-type, 46
make-regexp, 145
make-shared-array, 43
make-signal-queue, 133
make-sparse-vector, 41
make-string-input-port, 51
make-string-output-port, 51
make-string-table, 50
make-symbol-table, 50
make-syslog-mask, 148
make-syslog-options, 146
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make-table-immutable!, 50
make-table-maker, 50
make-text-codec, 88
make-time, 141
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maybe-obtain-lock, 97
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modify, 27
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name->errno, 149
name->group-info, 135
name->signal, 131

name->user-info, 135
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neq?, 38
never-rv, 99
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new-external-event-uid, 123
no-op, 38
no-submatches, 79
null-list?, 38
null-text-codec, 87

obtain-lock, 97
on-queue?, 42
one-of, 78
open-directory-stream, 136
open-file, 136
open-pipe, 143
open-socket, 55
open-syslog-channel, 149
OS string, 53
os-name, 135
os-node-name, 135
os-release-name, 135
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os-string->string, 54
os-string-text-codec, 54
os-string-thing , 53
os-string=?, 54
os-string?, 53
os-version-name, 135
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partition-list, 39
partition-list!, 39
placeholder-set!, 98, 101
placeholder-value, 98, 101
placeholder-value-rv, 101
placeholder?, 98, 101
port->fd, 144
port-is-a-terminal?, 144
port-terminal-name, 144
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prefix, 27
pretty-print, 40
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profile-function-calls, 56
profile-function-hist, 57
profile-function-memoryuse, 57
profile-function-nonreccalls, 56
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remove-directory, 138
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sleep, 91
socket-accept, 55
socket-client, 55
socket-port-number, 55
sparse-vector->list, 41
sparse-vector-ref, 41
sparse-vector-set!, 41
spawn, 91
string->os-byte-vector, 54
string->os-string, 53
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string-titlecase, 86
string-upcase, 86
submatch, 79
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syslog-option?, 146
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system, 54
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thread?, 91
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wait-for-child-process, 130
wait-for-external-event, 123
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wrap, 99
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x->os-string, 53
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