
T1Lib
Version 5.1.0 – Mai, 18, 2005

A Library for Generating

Character Bitmaps from

Adobe Type 1 Fonts

Rainer Menzner

Contents

1 Introduction 4
1.1 What Does t1lib Do? . 4
1.2 Copyrights and Credits . 5
1.3 Motivation . 6
1.4 How to Reach the Author/How to Get t1lib . 6

2 Getting Started 7
2.1 Building, Installing and Removing the t1lib-Package 7
2.2 Notes on Using GNU libtool . 8
2.3 Runtime-Setup . 8

2.3.1 Searchpath and Environment Setup . 8
2.3.2 The t1lib Configuration File . 9
2.3.3 The Font Database File . 11
2.3.4 Alternative Runtime Setups . 11

2.4 A Very Simple Programming Example . 12

3 The Program xglyph 15
3.1 Common Parameter Dialogs and Toggle Buttons 15
3.2 Buttons that Influence the X11 Rastering Functions 17
3.3 Buttons that Generate Actions . 17
3.4 The Message Window . 19
3.5 The Output Window . 19
3.6 xglyph Commandline Parameters . 19
3.7 Fonts Included in the t1lib-Package . 22
3.8 Some General Remarks on xglyph . 22

4 The Program type1afm 23

5 Using t1lib 24
5.1 Compiling and Linking t1lib-Programs . 24
5.2 Querying and Setting Fundamental Configuration Parameters of t1lib 24
5.3 Initialization of t1lib and Related Things . 26

5.3.1 Standard Initialization . 26
5.3.2 Fine Control over Font Databases and File Search Paths 27
5.3.3 Adding Fonts to the Database . 29
5.3.4 Summary of Search Path Handling . 29
5.3.5 Bypassing the t1lib File Search Machinery 30

5.4 The t1lib-Logfile . 31
5.5 Generating Bitmaps . 32
5.6 Loading Fonts Explicitly . 38
5.7 Functions for Encoding Handling . 39
5.8 Deleting Data . 41
5.9 Underlining, Overlining and Overstriking . 43
5.10 Common Information on Fonts and Characters 44

5.10.1 Information from FontInfo-Dictionary . 45
5.10.2 Metric Information on Glyphs . 46
5.10.3 Character-Encoding Relation . 49
5.10.4 Administrative Information . 50

5.11 Transformation of Fonts . 51

2

5.11.1 Fontlevel Transformations . 51
5.11.2 Transformation at Rastering Time . 53
5.11.3 t1lib and PostScript: Notes on Transformation Matrices 55

5.12 Stroking of Character Outlines . 56
5.13 Antialiasing . 58

5.13.1 General Description . 58
5.13.2 Setting Operating Parameters . 59
5.13.3 Smart Antialiasing . 60
5.13.4 Caching of Antialiased Character Glyphs 61

5.14 Interface to Outlines . 62
5.14.1 Outline Format . 63
5.14.2 Using Outlines . 65
5.14.3 Manipulation of Outlines . 67

5.15 Logical Fonts . 70
5.16 Missing or Invalid AFM Files . 70

5.16.1 Remarks on AFM Files . 70
5.16.2 Generation of AFM Information . 71
5.16.3 Writing AFM Files . 72

5.17 Font Subsetting . 74
5.17.1 Font File Organization and Subsetting . 74
5.17.2 Functions for Subsetting . 75
5.17.3 Further Functions for Subsetting . 76

5.18 Composite Characters . 76
5.18.1 General remarks . 76
5.18.2 Accessing Composite Character Data . 77
5.18.3 Transparent Handling of Composite Characters and User Extensions . . . 79
5.18.4 Caveats . 79

5.19 Error Handling . 80
5.19.1 Type 1 Font File Scan-Errors . 80
5.19.2 Path Generation Errors . 81
5.19.3 t1lib-Errors . 81

5.20 Other Useful Functions . 82

6 The X11-Interface 84
6.1 Why a Special X11-Interface? . 84
6.2 Initialization of the X11-Interface . 84
6.3 Rastering Functions . 85
6.4 Creating XPM-Files from t1lib-Glyphs . 87
6.5 Limits of the X11 Interface . 87

7 Internals (incomplete) 89
7.1 Level 0: Global Data . 89
7.2 Level 1: Size-Independent Font Data . 92
7.3 Level 2: Size-Dependent Font Data . 93

8 Stroked Characters 94
8.1 Approach . 94
8.2 Computation of Parallel Paths . 95
8.3 Connection of Path Segments and Prolongation 99

Function Index 102

3

1 Introduction

1.1 What Does t1lib Do?

t1lib is a library written in the C programming language allowing a programmer to generate
bitmaps from Adobe (TM) Type 1 fonts quite easily. These bitmaps are returned in a data
structure with type GLYPH. This special GLYPH-type is also used in the X11 window system to
describe character bitmaps. It contains the bitmap data as well as some metric information. But
t1lib is in itself entirely independent of the X11-system or any other graphical user interface.

Given that the X11-system is probably the most frequently used window system in the UNIX-
world, and furthermore assuming that most graphical applications run under window systems,
it appears that t1lib implements functionality already provided by the graphical user interface,
the X11-system. Thus the question arises: Why not use X11 directly for rastering characters?
Well, the answer is quite simple; the X11 Font machinery appears to be too static in order to
use it for certain purposes. Moreover X11-calculations and positioning of characters are based
on bitmap dimensions and are thus subject to error accumulation.

Here is a list of features which are supported in the current release of t1lib.

• Rasterizing is done as characters get requested. The X11-server, in contrast, rasters a font
completely at a given size when it is loaded. Rastering on demand saves time when the
font is loaded the first time and saves memory since often only the alphabetic letters and
a few other characters are needed.

• The encoding mechanism of PostScript is fully supported. The user may use the fonts’
internal or some other encoding. Additional encoding files can be loaded at runtime and
fonts can be reencoded at runtime. The syntax of encoding files is straight-forward and
simple.

• The library makes use of Adobe Font Metric data in the form of AFM files. This may seem
a disadvantage, but in order to make decent typesetting possible, some more information
than that contained in Type 1 font files is needed. Besides, Adobe makes these AFM files
freely available on their ftp-server for all registered Type 1 fonts.

• In case AFM files are missing, t1lib is able to generate metrics information in charspace
accuracy by rastering each character at 1000 bp.

• In addition to generation of character bitmaps, there is a way to directly raster strings of
any length in a given font. The space-width may explicitly be corrected by the user. This
may be needed by word processing applications.

• Strings may be rastered optionally using pairwise kerning information from the AFM file.
Kerning is an important feature of good quality typesetting. Kerning information can also
be requested by the user without rasterization.

• Ligature information is made available to the user in an efficient way. Use of Ligatures is
another characteristic of good typesetting. As to my knowledge, only TEX and all related
macro-packages are able to handle ligatures in a natural and efficient way.

• Rotation and arbitrary transformation on the fly is supported.

• t1lib supports antialiasing. In this case, a pixel is represented as a byte, word or double
word. Antialiasing is implemented by subsampling with factor 2 or 4 alternatively. If you
use the X11-interface introduced in t1lib V. 0.3-beta, even colored antialiasing between
any pair of colors is provided in a completely transparent way.

4

• In addition to transformation on the fly, two transformation types—slanting and extending—
are possible on the fontlevel including bitmap caching. Horizontal expansion of fonts is
fully supported and since version 0.3-beta also slanting of fonts is nearly fully supported.
For restrictions and drawbacks of slanting fonts see 5.11 on page 51.

• Paths, the library searches for the different needed file types are specified at runtime by
means of a configuration file. They may thus be changed without needing to recompile
the application. For example, the directories of the X11-system’s Type 1 font files may
be specified there in order to use these fonts with the library. A user may have his own
configuration file and as a fallback/default there is a system wide configuration file. This
should be setup when the library is installed.

• Since of version 0.3-beta a special set of functions is provided which implements a more
comfortable X11-interface. This is due to the fact that X11 is the only standard window
system in the UNIX world. However, as before t1lib may be compiled and used without
even having X11 installed.

• Some decorations like underlining are supported by simply setting a flag for the rastering
functions.

• Right To Left typesetting is supported.

• Font subsetting is easily achieved using a high level function. This makes it easier for
application to efficiently export Postscript files.

• Composite character information can be retrieved. Moreover, t1lib transparently handles
and realizes composite character definitions from AFM files.

There are also some problems and features not yet implemented, but likely to be implemented
in the future. The main problem up to now is:

• The font cache isn’t a font cache really. At this time all bitmaps are saved by always
allocating more memory from the system. No automatic removal of bitmaps no longer
needed is done. However, the user has the possibility of explicitly removing data, if he
thinks it is not needed anymore.

1.2 Copyrights and Credits

There are some copyrights on parts of the library and there are some programmers (or corpora-
tions) which I want to give credit. The library uses:

– all internal parts of the X11-rasterizer donated to the X11-project by IBM. This rasterizer
does the real hard work of scan-conversion.

– the modifications to the rasterizer done by Piet Tutelaers in his ps2pk-package. The main
purpose was decoupling the sources from the X11-system sources.

– the parse_AFM software which was made freely available by Adobe. This is used to parse
the AFM files (what a surprise) and to generate the data structures the information is
saved in.

Raph Levien (raph@acm.org) contributed an algorithm for sampling down non-antialiased
bitmaps to antialiased bitmaps in a very efficient manor. This makes antialiasing a lot faster.

Fred L. Drake, Jr. (fdrake@acm.org) wrote a Python interface to t1lib, which is distributed
with t1lib. This wrapper is called t1python and allows Python-programmers to use Type 1

5

fonts. I can not tell anything more on this topic since I do not know the Python language. All
questions concerning the Python interface should thus be addressed to Fred L. Drake, Jr.

Evgeny Stambulchik (fnevgeny@plasma-gate.weizmann.ac.il), maintainer of the grace-
project—a descendent of xmgr, never gets tired of finding and reporting (and fixing) bugs in
t1lib. Other members of this project spent time in porting t1lib to further systems:

• Ed Vigmond (vigmonde@IGB.UMontreal.CA): IRIX-port,

• John Hasstedt (John.Hasstedt@sunysb.edu): VMS-port,

• Alexander Mai (st002279@hrzpub.tu-darmstadt.de): OS/2-port.

Hirotsugo Kakugawa (h.kakugawa@computer.org) added support for GNU libtool to t1lib.
David Huggins-Daines (bn711@freenet.carleton.ca) spent effort in finding memory leaks

and maintains a Debian-package of t1lib.

Thanks to all these people
and to all those contributors not mentioned here!

1.3 Motivation

The idea of writing this library was due to the SciTeXt-project which was founded in 1996.
They needed a font raster system with some more functionality than X11 provided. You may
find that some things (for example the format of the font database file) is really closely related
to SciTeXt. In February ’97 the SciTeXt developers decided to migrate from C to Java and did
not need a font rasterizer any more. Since I thought there could be other applications for this
library I continued the work on it and voila.

I have removed the history description which followed at this place in some previous versions.
The history can be roughly viewed in the file Changes which is located in the toplevel directory
of the distribution.

1.4 How to Reach the Author/How to Get t1lib

If you have questions, comments or bug reports, you can reach me by eMail. The address is

Rainer.Menzner@web.de

If you have bug-reports, it would be best if you could reproduce the error using the test program
xglyph (see 3).

t1lib is available by anonymous ftp as

ftp://sunsite.unc.edu/pub/Linux/libs/graphics/t1lib-x.y[.z].tar.gz

Here, x.y.z is the version identifier and the brackets around z indicate that this entry is optional.

6

2 Getting Started

2.1 Building, Installing and Removing the t1lib-Package

As of version 0.2-beta, the autoconf-package is used to configure and build the library. imake
is no longer supported. Furthermore, starting with version 0.8-beta GNU libtool is used for
managing library-specific stuff.

Here is how to build and install t1lib:

1. Change to T1-directory.

2. Run ./configure. This will check your system’s setup and generate the Makefiles. By
default, shared and static versions of the libraries are built.

Specifying --disable-shared or --disable-static as a commandline option to configure
will suppress the generation of the respective library type. Of course, these rules are su-
perseded by the capability of the system to manage those library types.

If you know shared libraries are supported on your system but configure says that no dll
can be built, some compiler option may be setup incorrect. Please refer to (2.2).

If the X11 window system is installed on the target system t1lib is automatically build
with special X11 support. In cases where this is explicitly not desired the commandline
option --without-x may be used to configure a library without extended X11 support.
In this case the test program xglyph is also not build since it needs X11.

3. Run make. This will build all the stuff including the documentation. If you do not have
LATEX 2ε run make without_doc. This will skip generating the documentation.

4. Type make install to install the package. You’ll probably need to be superuser for
installing the package at the standard locations. However, the files may be located wherever
the user wants, as long as the compiler finds them at compile time. So, place them where
you want.

The following files are installed when doing a make install:

• lib/libt1.a and/or lib/libt1.so.v.r.p if the system supports shared libraries.
In the latter case, also two symbolic links to the shared library, libt1.so.v and
libt1.so, are generated. Here, v and r mean version and revision of the shared
library. p is the patch level. Library and links are installed in the directory specified
by the autoconf-variable libdir which is by default /usr/local/lib.

• The same as above holds for lib/libt1x.a or lib/libt1x.so.v.r.p respectively,
which contain the X11 interface functions. This library is only installed if X11 support
was possible and not suppressed.

• lib/t1lib.h and optionally lib/t1libx.h. They are installed in the directory
pointed to by the autoconf-variable includedir which is by default
/usr/local/include.

• The test program xglyph/xglyph. If shared libraries are supported (and not sup-
pressed by --with-static-lib) this executable is dynamically linked to libt1.so
and libt1x.so. It is installed in the directory pointed to by the autoconf-variable
bindir (by default /usr/local/bin).

• The converter type1afm. The same applies as above for xglyph.

7

• A subdirectory named t1lib-v.r is created in the directory pointed to by the autoconf-
variable datadir (default /usr/local/share) and a default global configuration file
t1lib.config is installed there. Note that this configuration is not of any use. It
has to be setup by the administrator to specify the paths to the system’s Type 1
fonts and AFM files as well as any t1lib encoding files. Notice also that the global
configuration file is not installed if it already exists. This is to prevent from deletion
of an existent setup.

• A subdirectory doc is created in the directory where the global configuration file
resides (see above). The LATEX 2ε-documentation t1lib_doc.dvi as well as all needed
graphics files is installed there. The LATEX 2ε-sources are not installed!

• If you ever want to remove t1lib from your system this can be achieved by calling
make uninstall. This reverts all steps described above. Of course, this works only if
t1lib has not been reconfigured using different parameters since the time of install.

The top level Makefile further supports the targets clean and distclean. The latter is
an extension of clean which also removes the makefiles as well as the log and cache files of the
configuration process. It forces thus a new call to configure.

A make clean is needed, for example, if someone experiments with static and shared libraries
since the object files for shared libraries require the additional position independent code options.

The directory T1/parse_afm is not needed at all, it is included only for completeness. The
parts needed from this have been copied to the lib/t1lib-subdirectory.

2.2 Notes on Using GNU libtool

libtool might get confused by heterogenous compiler setups. This is the case, for example,
on our Solaris system where by default gcc is used in combination with the system specific
linker. This configuration leads to libtool reporting that no shared library can be built which
definitely is wrong. In most cases such problems can be solved by fiddling with the environment
entries CC, CFLAGS, LD and LDFLAGS.

libtool hides the real objects in subdirectories named .libs. This means, after a successful
build, libt1.so is located in T1/lib/.libs. Similarly, if shared libraries are built the executable
T1/xglyph/xglyph is a simple wrapper to T1/xglyph/.libs/xglyph.

2.3 Runtime-Setup

2.3.1 Searchpath and Environment Setup

t1lib basically needs four types of files:

• .afm-files: These contain font metric descriptions as well as kerning and ligature informa-
tion for a particular font.

• .pfa-/.pfb-files: These contain the character outline descriptions. Type 1 font files may
also lack any extension in their filename. This is the habit on NeXTStep, for example.

• .enc-files: These contain encoding arrays in a special but simple form. They are only
needed if someone wants to load a special encoding to reencode a font.

• A font database file. The library needs at least one font database file specification. See
below for a description of this font database file. Optionally, multiple font database files
can be specified.

8

In order to tell t1lib where these files are located in the filesystem, a configuration file usually
has to be set up by the user. At time of initialization (see 5.3 on page 26) the library tries to
locate all data it needs immediately or possibly later. The following actions take place in order:

1. The library tries to read the variable T1LIB_CONFIG from the program’s environment. The
value of this variable is expected to be the pathname of a configuration file for t1lib.

2. If the variable T1LIB_CONFIG exists, the file pointed to by this variable will be tried to
be opened. In case no environment variable exists, the library will attempt to open a
file called .t1librc in the user’s home directory. If this file as well does not exist, the
global configuration file t1lib.config is tried to be opened.1 If all these attempts to
open a configuration file did not succeed, all searchpaths are left at defaults (.) and the
font database file is setup to be ./FontDataBase. If this file cannot be opened, the call to
T1_InitLib() returns a NULL-pointer thus indicating an error condition. The program
should then exit because t1lib would not be able to do anything without an association
of font IDs to font files.

3. Assuming a configuration file has been found and opened at any of the above three loca-
tions, this file is parsed and all relevant information in this file is recorded.

4. Using the paths specified in the configuration file, the font database is opened and pro-
cessed. The existence of every Type 1 file that might later be needed is ensured. The
existence of the corresponding AFM file is not verified during initialization, because this
information is not ultimatively critical when generating a character bitmap.2 Aside from
this, t1lib can generate the required part of the AFM information on the fly.

2.3.2 The t1lib Configuration File

It is the purpose of the configuration file to setup search paths and font databases. The format
of this file is quite simple and straightforward:

• Each line starting exactly with ENCODING= is read in. The remainder of the line is expected
to be a list of searchpath specifications for encoding files. No white space may appear
between = and the path specification(s). Multiple paths may be specified by separating
the single paths with colons.3 The path specification(s) may be followed by any white
space characters.

• Each line starting exactly with AFM= is read in. The remainder of the line is expected to be
a list of searchpath specifications for Adobe Font Metric files. No white space may appear
between = and the path specification(s). Multiple paths may be specified by separating
the single paths with colons. The path specification(s) may be followed by any white space
characters.

• Each line starting exactly with TYPE1= is read in. The remainder of the line is expected
to be a list of searchpath specifications for Type 1 font files. No white space may space
between = and the path specification(s). Multiple paths may be specified by separating
the single paths with colons. The path specification(s) may be followed by any white space
characters.

1The filenames for the user’s and the global configuration file as well as the name of the environment entry are
default names defined in lib/t1lib/t1misc.h. They may be redefined by the user at compile time if necessary.

2For example, a program may generate a character table of a Type 1 font without having AFM information.
3A colon is the default path separator on UNIX systems. For certain other Operating Systems the path

separator may be a semicolon.

9

• Each line starting exactly with FONTDATABASE= must specify a colon-separated list of font
database filenames on the remainder of the line. No white space is allowed between = and
the path specification, but trailing white space is allowed.

• Each line starting exactly with FONTDATABASEXLFD= must specify a colon-separated list of
font database filenames that adhere to the XLFD (X11 Logical Font Definition) on the
remainder of the line. No white space is allowed between = and the path specification, but
trailing white space is allowed.

This keyword is not an independent key word, rather, it allows to specify a special al-
ternative type of font database—a type that usually exists as part of every X11 system.
Standard and XLFD font database files may be specified both in one configuration file.
They interact in a way, that if an XLFD font database file is specified, this overwrites the
default standard font database setup before the configuration is read.

• All other lines are ignored by the library.

A configuration file may contain multiple path declarations of one type. In this case, a
list of path elements is built internally in the same order that the specifications appear in the
configuration file. For example, the statement

TYPE1=/usr/X11/fonts/Type1:/home/user/fonts/Type1

is equivalent to the two statements

TYPE1=/usr/X11/fonts/Type1
TYPE1=/home/user/fonts/Type1

In order to specify paths that incorporate unusual characters like white space or the path
separator, it is possible to quote the path string element using double quotes “"”. All characters
after the leading quotation mark are verbatim read to the path until the closing quotation mark
appears. The double quotes may also become part of a path specification by using the escape
sequence “\"”. Hence, the following statement specifies a correct albeit somewhat unusual
search path:

TYPE1=/usr/X11/fonts/Type1:"/home/user/My \"Best\" Fonts/Type1"

Here is an example of how a user could do the runtime setup:

Example:
Create a file, say, named t1.config with the following contents in your HOME-directory:

This is a configuration file for t1lib
These two lines are considered to be comments

FONTDATABASE=/home/user/test/myprog/FontDataBase
ENCODING=/usr/local/lib/fonts/type1/enc:.
AFM=/usr/local/lib/fonts/type1/afm:.
TYPE1=/usr/local/lib/fonts/type1/outlines:.

After this, make the environment variable T1LIB_CONFIG point to this file, i.e.,
setenv T1LIB_CONFIG ~/t1.config
for tcsh, or
export T1LIB_CONFIG=~/t1.config
for bash. Provided that the path specifications in the configuration file are correct, the setup is
done. When setting T1LIB_CONFIG in an interactive shell as described above, the shell does the
tilde expansion. Notice that t1lib never does tilde expansion.

10

2.3.3 The Font Database File

This is one more file important at startup time. I call it “font database file” because it makes
fonts declared in this file known to the library. Moreover, the association declared font ⇐⇒
FontID is done using information from this file. The format specification of this file is relatively
free. Here are the exact rules:

• Line 1 contains a positive integer specifying the number of fonts declared in that file. This
is as in the fonts.dir files of the X11-system.

• All remaining lines contain declarations of one font each. The only thing taken from such
a line is the last string (delimited by white space) in it. It is assumed to be a filename of
the format basename.someextension. Furthermore, the basename-part is assumed to be
the basename of a fontfile name. After such a string has been parsed, the extension is cut
off and replaced in turn with .pfa and .pfb. The initialization routine tries to open a
font file with one of the resulting filenames.

Since V. 0.9 the “.” as well as the “someextension” may be missing completely. Moreover,
t1lib looks for Type 1 Font files whose name do not have any extension at all. This is
due to conventions of some UNIX-systems.

• The remaining of the line, i.e., from beginning to the start of the filename string is com-
pletely ignored and may contain some information for other programs or be empty.

The format described above may seem to be underspecified, but it has been chosen to be com-
patible with the SciFonts-fileformat, which is used during the initialization of the SciTeXt word
processor.

Example 1: A minimal font database file for 4 fonts:

4

isvl.afm

isvli.afm

isvd.afm

isvdi.afm

This file is minimal, because it contains just the information needed, and nothing not needed
by t1lib.

Example 2: A more realistic example, which allows an application to match a fully qualified
X11 fontname to a FontID in t1lib. This is also a valid font database file:

4

Souvenir Souvenir-Light --- -itc-souvenir-light-r-normal--#-0-0-0-p-0-iso8859-1 isvl.afm

" Souvenir-LightItalic -*- -itc-souvenir-light-i-normal--#-0-0-0-p-0-iso8859-1 isvli.afm

" Souvenir-Demi *-- -itc-souvenir-demi-r-normal--#-0-0-0-p-0-iso8859-1 isvd.afm

" Souvenir-DemiItalic **- -itc-souvenir-demi-i-normal--#-0-0-0-p-0-iso8859-1 isvdi.afm

2.3.4 Alternative Runtime Setups

The runtime setup described above is the most simple principle of getting started. However,
there might be applications that deal with only one font file. A good example is the type1afm-
utility which is described in section 4. In such situations it seems to be overkill to read a font
database file and several load paths. For this reason there are alternative ways to specify what
should be read from where. Their description is deferred to section 5.3.

11

2.4 A Very Simple Programming Example

The following code is a very simple programming example of how to use t1lib. It even
runs on an ASCII-terminal. It is provided in the examples-subdirectory of the distribution
as t1example1.c. This program must be compiled to object format and then linked with the
library libt1.a or libt1.so, respectively. On most systems the commandline

cc -o t1example1 -I ../lib t1example1.c -L../lib -lt1 -lm

should do it. For convenience reasons a Makefile.in is included in the examples directory and
the stuff is built automatically.

At runtime, a well defined setup must be found, i.e., a configuration file with path definitions
and a font database file. These also are located in the examples subdirectory.

#include <stdio.h>
#include <stdlib.h>
#include <t1lib.h> /* All needed declarations */

int main(void)
{

GLYPH *glyph;
int i;

/* Set our environment to an existent config file directory */
putenv("T1LIB_CONFIG=./t1lib.config");

/* Pad bitmaps to 16 bits, the default being 8 bits */
T1_SetBitmapPad(16);

/* Initialize t1lib and return if error occurs. No logfile will be
generated */

if ((T1_InitLib(NO_LOGFILE)==NULL)){
fprintf(stderr, "Initialization of t1lib failed\n");
return(-1);

}

/* For every font in the database, generate a glyph for the string
"Test" at 25 bp. Use Kerning. Then dump an ASCII representation
of the glyph to stdout */

for(i=0; i<T1_Get_no_fonts(); i++){
glyph=T1_SetString(i, "Test", 0, 0, T1_KERNING, 25.0, NULL);
T1_DumpGlyph(glyph);

}

/* Close library and free all data */
T1_CloseLib();

return(0);

}

12

We assume that in the current directory there is a file FontDataBase which declares two
fonts, Souvenir Light and a bold italic variant and further, that these fonts and their AFM files
can be found using the paths from the configuration file. If the resulting program is run, it
produces some output like the following on stdout:

13

Dataformat: T1_bit=0, T1_byte=1, T1_wordsize=16, T1_pad=16
GlyphInfo: h=18, w=44, paddedW=48
.XXXXXXXXXXXXXX.
XXX....XX....XXX
X......XX......XX.......
.......XX.......X.......
.......XX.......XX.......
.......XX.......XX.......
.......XX....... ...XXXX.......XX XXX..XXXXXXX....
.......XX....... .XX...XX.....XX. ..XX...XX.......
.......XX....... XX.....XX...XX.. ...X...XX.......
.......XX....... XX.....XX...XX..XX.......
.......XX......X X......XX...XXX.XX.......
.......XX......X X....XXX.....XXX XXX....XX.......
.......XX......X XXXXXXX.......XX XXXX...XX.......
.......XX......X XX.............. ..XXX..XX.......
.......XX......X X............... ...XX..XX.......
.......XX....... XX......XX..X... ...XX..XX.......
.......XX....... XXX....X....XX.. ..XX...XX.......
.....XXXXXX..... ..XXXXX.......XX XXX....XXXXX....
Dataformat: T1_bit=0, T1_byte=1, T1_wordsize=16, T1_pad=16
GlyphInfo: h=18, w=51, paddedW=64
.XXXXXXXXXXXXXXX X...............
.XXXXXXXXXXXXXXX X...............
.XX....XXXX....X X...............X X...............
.X.....XXXX..... X...............X X...............
......XXXXX.....XX X...............
......XXXXX.....XX X...............
......XXXX......XXXXXX...... .XXXXX.....XXXXX XXX.............
......XXXX...... ..XXXXXXXXXX...X XXXXXXXX...XXXXX XXX.............
......XXXX...... .XXXX...XXXX..XX XX...XXX....XXXX
......XXXX...... XXXX....XXXX..XX XX....XX....XXXX
.....XXXXX...... XXXX...XXXX...XX XXXX........XXXX
.....XXXXX.....X XXX..XXXXX.....X XXXXXX......XXXX
.....XXXX......X XXXXXXXX........ XXXXXXXX....XXXX
.....XXXX......X XXX............. ..XXXXXX...XXXX.
.....XXXX......X XXX.......X..XX.XXXX...XXXX.
.....XXXX....... XXXX....XXX.XXXXXXXX...XXXXX XX..............
....XXXXXX...... XXXXXXXXXX...XXX XXXXXXX....XXXXX XX..............
...XXXXXXX...... ..XXXXXX.......X XXXXX......XXXX.

14

3 The Program xglyph

xglyph is a tool which makes most of the functionality of t1lib visible to the user without the
need of having to write an own program and without the need of having to understand most of
the library before. This program—as the name indicates—needs X11. It is thus only build if
X11 is installed on the target system and if X11 support has not explicitly been disabled. All
necessary resources are set internally to default values so that the program can be run out of
the box without any installation.

In case the user did not already create a custom configuration file and an associated font
database file, the program should be started from the subdirectory xglyph of the distribution.
When starting, xglyph checks for the environment entry T1LIB_CONFIG and if it does not exist
it adds the association T1LIB_CONFIG=./t1lib.config to the environment. In other words it
expects a valid configuration file in the current directory.

There are several widgets which may be categorized into 5 types.

3.1 Common Parameter Dialogs and Toggle Buttons

These buttons modify the internal state of the program by setting some global variables. These
variables affect the execution of all rastering functions in contrast to the buttons described in
the next subsection which only take influence on the X11 rastering functions. When changing
one of the following parameters nothing seems to happen at first. All actions are deferred to the
time when an action button is clicked. Here is a list of the dialogs and toggles:

• FontID
This dialog allows to specify the font ID that will be used when the next action takes
place. The allowed IDs range from 0 to n− 1, where n is the number of fonts declared in
the font database file. If using the default configuration file together with the default font
database file, 8 fonts are declared. If an invalid ID is specified, the next action generates
an error message.

• Font-Size
Here, the size of the font is specified. The value is interpreted in bigpoints, the default
PostScript unit. If the size specified is invalid, an appropriate error message is generated
at the time of the next action.

• Slant-Factor
A slant factor s may be specified. It is interpreted the following way. A point described by
the coordinate-pair (x, y) is transformed to the point with the coordinates (x+ sy, y). For
instance, specifying a slant factor s = 1 will generate a font slanted by 45◦. Since version
0.3-beta slanted are nearly fully supported. For a discussion of the remaining problems
see 5.11 on page 51.

• Extension-Factor
Horizontal extension of a font may be realized using this dialog. The default value is
1 which means the characters are presented at their natural width. Specification of an
invalid value will generate an error message at the time of the next action.

• Transformation-Matrix
This dialog gives complete Control over the transformation matrix that will be used in con-
sequent rasterizations. The values have to be specified separated by commas. A specified
rotation is still applied after this matrix.

15

• Res [DPI]
The resolution of the output device (screen) may be specified in this dialog. Using the
default value of 72 dpi means one bp in size corresponds to exactly one device pixel.

• S-Width
This dialog field allows to setup the penwidth used for stroking characters. If this field is
zero, which is the default, the characters are filled, unless, the font under consideration is
a stroked font, that is, it has PaintType = 1.

• Encoding-File
The name of an encoding file may be specified. Included in the distribution is only one file,
IsoLatin1.enc. It contains the standard X11 encoding in a format acceptable by t1lib.
If no name is given here, or the file with the name given here cannot not be parsed as an
encoding file, the encoding is switched back to the fonts internal encoding. Again, this is
done at the time of the next action.

• Angle
The angle at which the next character or string is rastered is specified here. There are
no restrictions concerning the angle. Rotation is applied after setting the transformation
matrix (see above).

• Space-Off
The value specified here represents an offset added to the spacewidth when rastering the
next string. For this, it is interpreted in PostScript charspace units and thus subject to
scaling.

• Character
A number between 0 and 255 inclusive should be specified here. It is used as the index
into the current encoding vector when rasterizing a character. This gives the user access
to all currently encoded characters, regardless of the current X11 keyboard mapping. If
an index is given whose encoding entry would produce no black pixels, an error message is
generated at the next character-rastering time. The default value is 65, which corresponds
to the character “A” in most encoding vectors.

• Test-String
In this dialog, a complete string may be specified. It will be rastered when the next string-
rastering button is pressed. It can be of arbitrary length (well, almost). If this field is left
empty, the standard string “Test” will be used for rastering.

• Kerning
This is a toggle button. Its state determines whether pairwise kerning information from
the AFM file will be used to correct the horizontal spacing during string rastering or not.
A typical example is the word “Test”; enabling kerning should—at least in fonts of good
quality—move the “T” and the “e” significantly closer together.

• Ligature
This is a toggle button. Its state specifies whether the string is checked for ligatures prior
to rastering it. Suitable character sequences are replaced with the corresponding ligature.
For a good example, you should switch to font ID 4 and type in the string --difficult---.
If ligature detection is switched on, the two hyphens should be converted to an en-dash
“–”, the three hyphens should be converted to an em-dash “—” and the character series
“ffi” should be replaced with the ligature “ffi”, rather than to be displayed as “ffi”.

16

• | −→ / ←− | This button allows to change the writing direction that t1lib will use in
subsequent calls to the string rastering functions, the default being Left To Right as used
in most European languages. This item is simply meant to demonstrate the capabilities
of t1lib. The package does not come with fonts that are intended to be used for Right
To Left typesetting.

• Underline
This toggle button determines whether strings are underlined or not.

• Overline
Same as above for overlining.

• Overstrike
Same as above for overstriking.

• AA-Low / AA-High
This button allows to select the subsampling factor for antialiasing in subsequent rastering
operations. AA-Low means subsampling by factor 2 which gives 5 gray values including
black and white, whereas AA-High means subsampling by 4 which yields 17 gray values
including black and white.

Notice that, aside from the latter, the toggle buttons only affect the string rastering functions.

3.2 Buttons that Influence the X11 Rastering Functions

The X11 rastering functions introduced in version 0.3-beta provide a considerably higher level of
abstraction than the standard rastering functions. To show the effect in xglyph, a few additional
buttons are provided.

• Transparent / Opaque
This button allows to switch between transparent and opaque mode in the X11 rastering
functions. In transparent mode, only non-background pixels are drawn and all other pixels
are left untouched. In opaque mode the entire area that the bitmap will require is first
filled with the background color and then the bitmap is placed on this area.

• Foreground
This is a label field with six color fields to the right and one color field to the left. Clicking
on one of the color fields located on the right side will set the foreground color to the
respective value (white, black, gray, red, green or blue). The color field on the left side
always shows the current color selection.

• Background
This also is a label field with six color fields to the right and one color field to the left. It
works in analogy to the above and sets the current background color. Note that in order
make the background color active, the drawing mode must be set to “opaque”.

3.3 Buttons that Generate Actions

There are 10 buttons generating actions visible to the user.

• Char
This button generates a bitmap of the character specified in the Character -dialog box.
All parameters changed earlier become effective at this time. The resulting bitmap is then
shown in the output window of xglyph. Some information about the generated bitmap

17

and elapsed time etc. is given in the message window. If an error occurred, the old contents
of the output window are kept and a message is given to the user.

• String

This button generates a bitmap of the string specified in the Test-String -dialog box.
In addition to rastering characters, kerning and ligature settings may now take influence
on the result of the operation (see 3.7). If no error occurs, the bitmap is shown in the
output window and additional information is shown in the message area. Otherwise, an
appropriate error message is given.

• AAChar

• AAString
Both of these buttons do exactly the same as their non-antialiased counterparts. The only
difference consists in the generation of an antialiased bitmap. The result is not a bitmap
in fact. There are at least 8 bits per pixel and at most 32 bits per pixel in the resulting
glyph. This depends on the depth of the X11-visual you use when starting xglyph. The
result may consume quite a bit of memory if a TrueColor or DirectColor visual is active.

• CharX

• StringX

• AACharX

• AAStringX
These functions basically do the same as the counterparts lacking the “X” in the name. But
internally the X11 rastering functions are called to produce the output bitmap/pixmap.
As a consequence the current foreground color, background color and drawing mode are
taken into account. For a more complete discussion of the X11 rastering functions see 6
on page 84.

• Font Table
A character table of size 16 × 16 is shown in the output window. Each cell contains an
antialiased representation of the character indexed by the field number. The function
T1_AASetCharX() is used for drawing these characters. Current foreground and back-
ground colors are respected as well as are most other parameters accepted by the character
rastering functions. Only the angle specification is ignored since I assume that it is not
very useful to have an overview over a font at any angle different from 0. Notice that
the default size (100) is probably too large to make the output window fit on the screen.
No care is taken about this. The recommended size for viewing a font’s character map is
between 20 and 30 points at 72 dpi resolution.

• About
Shows an ‘about’ message telling you that you are using xglyph and t1lib in the current
version.

• Exit Program
This button does what it says and exits the program.

18

3.4 The Message Window

This area is located below the dialog box for the test string. Information potentially useful
to the user is given here. There should be nothing needed to be said about the info—it is
self-explaining. But two things should be noted:

• The elapsed time that is displayed is exactly the time spent in the respective rastering
function. There might have been other actions in force which might make the user believe
the time value given as being incorrect.4 Moreover, the transfer to the X-server may
become significant if 32 bits per pixel are used, the image is large and the program is
running on a remote machine.

• The message t1lib: Couldn’t generate Bitmap, T1_errno=...! simply tells the user
that no bitmap could be generated. There may be several reasons. E.g., the FontID-
value given might have been out of range. Another possibility is that you have specified a
character index which has no encoded character associated. The value of T1_errno might
give a hint of what the problem was.

If a character map is displayed, the message window is giving no information apart from the
font name and the final value of T1_errno because there have been executed up to 256 rastering
operation and it would be impossible to keep track of all single operations.

3.5 The Output Window

The output window shows the output of the rastering operations. Its type is different for the
standard and the X11 rastering functions. For the standard rastering functions, it is always
adapted to the size of the glyph which is displayed plus a margin of 5 pixels on each side. For
this reason, leading and trailing white space is not shown in the output window, it only shows
up in the glyph’s metrics in the message windows.

The X11 rastering functions generate an output window of constant size (600 × 400 pixels)
with a logical origin in its center. This center is marked by a cross-hair of color cyan. The
glyph is placed with respect to this origin. If it is too large to fit, the glyph simply is clipped.
A second cross-hair is shown at the place where the origin of the next glyph would be located
in color magenta.

If a character map of a font is displayed, the output window contains a map of 16× 16 cells
whose size depends on the metrics of the font that is displayed.

3.6 xglyph Commandline Parameters

The syntax of the xglyph commandline is

xglyph [options] [fontfile1 [fontfile2 [...]]]

If no options and no font files are specified on the commandline xglyph reads the fonts from
the font database file. The details depend on which configuration file is found and on this file’s
contents. If at least one font file is specified on the commandline, the font database—being
existent and accessible or not—is ignored and the database is built using the fonts from the
commandline. fontfile1 is assigned the font ID 0, fontfile2 is assigned the ID 1 and so
forth. Files that cannot be opened for some reason are simply skipped.

xglyph also recognizes a few options. Notice that these options are not intended for an aver-
age user. Rather, they provide a means of (a) controlling debugging output from the rasterizer,

4For example, there might have been size-dependent data to be deleted and recreated, or an encoding file
might have needed to be loaded before rastering.

19

(b) controlling generation and verbosity of the t1lib-logfile, (c) disabling certain features of
the rasterizer and (d) checking some t1lib functions which otherwise would not be required
because of the limited functionality of xglyph.

All commandline arguments that start with “--” are considered to be options to xglyph.
The following is a complete list of valid options and a brief description of their effect:

• --help: Display the commandline syntax of xglyph as well as a brief list of the available
options for an average user and exit.

• --Help: Display the commandline syntax of xglyph as well as a brief list of all available
options.

• --noGrid: The cross-hairs marking start and end position of a glyph in the output of
one of the X11 rastering functions will be suppressed. This might be useful at small sizes
because the grid overwrites the glyphs’ pixels.

• --setPad: The padding value xglyph should use can be specified here. This has to be
followed by either “8”, “16” or “32”, separated by a space. Notice that the value “32”
might be rejected as described in 5.2. The value actually used can be found by writing a
logfile and examining this after a session.

• --logError:

• --logWarning:

• --logStatistic:

• --logDebug: These options firstly instruct xglyph to create a t1lib logfile and secondly
set the loglevel to the respective value (see 5.4). Without specifying one of these options,
no logfile will be generated.

• --ignoreForceBold: Instructs the rasterizer to ignore a ForceBold hint in the Type 1
font file.

• --ignoreFamilyAlignment: Instructs the rasterizer always to compute font level align-
ment according to BlueValues and OtherBlues, even if FamilyBlues and
FamilyOtherBlues exist and all conditions for substitution are fulfilled for that combina-
tion of font and size.

• --ignoreHinting: Instructs the rasterizer to omit hinting completely.

• --ignoreAFM: The use of AFM information is ignored, no matter whether it could be
accessed via an appropriate AFM file or self-generated. When using this option the string
functions would not work. It may, however, be useful because self-generation of AFM data
fails as soon as at least one character of all defined characters can not be processed and
thus, the font will refuse to load. Using this option, consequently, one has access to all
character that are processible, e.g., for generating a font table. characters that can be
rasterized

• --debugLine:

• --debugRegion:

• --debugPath:

• --debugFont:

20

• --debugHint: All these instruct the rasterizer to write particular debug messages from
intermediate steps of rasterization to the terminal. In order to understand and interprete
them, a thorough understanding of the Type 1 font format specification and this special
rasterizer implementation is crucial.

• --checkPerformance: This option affects the X11 string rastering functions. An addi-
tional output window is created and the output of before-mentioned functions is directly
written into this window. Note that this window is not managed as might be expected.
Text is only drawn at the visible parts and after partially or completely hiding and again
raising the respective areas are lost. This mechanism should simply give an idea of how
fast the X11 rastering function work, admittedly a critical topic in t1lib.

• --checkCopyFont: This option is used to check the proper functioning of the T1_CopyFont()
function. It copies all fonts from the database to new logical fonts and slants these fonts
by 0.3. Finally an additional fontfile is added to the database. For each step the new font
ID is printed to the terminal and the initial and final number of fonts are printed.

• --checkConcatGlyphs: This option affects the buttons String and AAString . The
requested string glyph is generated twice, first time using the current value of font ID and
second time using this values plus 1. Both resulting glyphs are concatenated and the result
is shown in the output window.

• --checkConcatOutlines: This option, too, affects the standard string rastering functions.
The current test string will be fetched as an outline using the current font ID. The result
is then concatenated with a horizontal movement of 1000 charspace unit which is followed
by the identical string using a font ID advanced by 1. The result of the concatenated
outlines is then filled and converted to a t1lib-glyph. For details on outline handling and
what it is meant for see 5.14.

When --checkConcatGlyphs and --checkConcatOutlines both are specified on com-
mandline, the --checkConcatGlyphs is respected.

• --checkBadCharHandling: This option provides a means of examining the effects of
problematic/bad characters on string handling in t1libwith xglyph. It affects only the
String button. The character to be specified in the test character field is inserted in the

middle of the test string. This enables the user to insert arbitrary character codes in the
middle of a test string and to watch the effect in T1_SetString(). For example, starting
xglyph with this option exclusively and immediately clicking String will show the string
TeAt in the output window because the character ‘s’ has been overwritten by character
6510 (‘A’), the default test character.

• --checkDefaultEncoding: This option proves that the default encoding feature works
correct. If set, all fonts should be encoded in IsoLatin1 encoding immediately after startup
and without any slow down at startup.

• --checkSmartAntialiasing: Enables smart antialiasing as described in 5.13. The effect
is that t1lib will determine the antialiasing level by itself. For sizes below 20 bp, 4×
antialiasing will be used and up to 60 bp 2× antialiasing is used. For size of 60 bp
and larger a “bytemap” is created which in fact consists only of pure background and
foreground pixels. When this options has been specified, toggling the antialiasing level has
no effect.

21

• --checkAACaching: This option enables caching of antialiased character glyphs. For a
discussion of this issue see 5.13.4. The string rastering functions are not affected by this
option.

• --checkSetRect: This option allows to check the rectangle drawing functions of t1lib.
If specified, the character drawing buttons will produce an em unit square of the current
font instead of the expected character.

• --cacheStrokedGlyphs: If this option is specified, xglyph will cache stroked glyphs
whereas filled ones are not cached.

For those who are wondering about special X11 options like “-display”, xglyph does not
support these. The widgets are built straight ahead and the layout is fixed. xglyph is meant to
be a tool for testing some of the functionalities of t1lib and nothing more. Of course, a display
other than localhost:0.0 may be specified by environment variable DISPLAY.

3.7 Fonts Included in the t1lib-Package

Included in the t1lib-package are 8 fonts of two families which are freely available.

1. The CharterBT-fonts in Roman, Italic, Bold and BoldItalic variants. These are good
quality fonts containing kerning information. Notable kerning pairs are “T”–“e”, “A”–
“V” and “A”–“T”.

2. The ComputerModern-fonts by Donald E. Knuth in the variants Roman, Italic, Bold-
Extended and BoldExtendedItalic. In addition to kerning information, there are many
ligatures in these fonts. Most people will know about the present ligatures from using
TEX, the typesetting system. Notable examples are: -- → “–”, --- → “—”, fi → “fi”
and ffi → “ffi”. These fonts have the disadvantage that no ordinary space character is
included, only a visible space. TEX itself does not need a dedicated space character.

Note that working with ligatures requires the ligatures to be encoded at the positions they are
expected. Thus, if you reencode one of the dc-fonts with the IsoLatin1-encoding funny effects
may occur.

3.8 Some General Remarks on xglyph

The program xglyph is just intended to check whether t1lib works on a particular system. It
is written straight forward and does not care much on performance and such. Especially, it is
not a typical application for a rasterizer library. The bitmaps are generated and then the output
window is adapted to the size of the bitmap/pixmap generated by the rastering function. This
contradicts the X11 principle of “drawing into a drawable” and requires some overhead if one
wants a fitted output window. In that sense, the performance of the X11 rastering functions
is not directly comparable to the performance of the standard rastering functions. This should
always be kept in mind.

22

4 The Program type1afm

type1afm is a simple commandline tool (about 150 lines C source code) that allows to generate
an AFM file from a Type 1 font program. It is intended for people who want to use Type 1 font
files that come without AFM files with t1lib (or other software that requires AFM files). The
syntax is

type1afm [-l] <fontfile1> [<fontfile2> <fontfile3> ...]

For each fontfile specified on the commandline, an AFM file with the corresponding name is
generated in the current directory. Most of the work is done in t1lib-internal functions. See
section 5.16 on how AFM information is generated and written to files.

It is usually not desireable to leave a logfile wherever the utility has been executed. Thus
by default no logfile is generated. This behaviour can be changed by specifying the optional
parameter -l. This causes a logfile with T1LOG_DEBUG as loglevel to be written to the disk. Its
name will be t1lib.log (see 5.4).

23

5 Using t1lib

This section describes in detail how to use t1lib. I have tried to to describe the stuff in the
order a new user would learn best and a new user would need to use the functions.

5.1 Compiling and Linking t1lib-Programs

A program that wants to use functions from the library must include the appropriate headers
at compile time and then be linked with the appropriate libraries. Since V. 0.6-beta the X11
interface is separated from the t1lib pivotal stuff. This yields advantages for programs that
don’t use the X11 rastering functions on systems where X11 is installed. The following applies
to programs that do not use the X11 rastering functions:

• Include the file t1lib.h. All definitions and declarations needed at compile time are
included in this file.

• libt1.a or libt1.so respectively must be linked to the program.

In contrast, a program that uses the X11 interface must adhere to the following scheme:

• t1lib.h and t1libx.h must be included in this order. Furthermore, t1libx.h includes
X11/Xlib.h if it is not already included.

• The libraries libt1.a/libt1.so and libt1x.a/libt1x.so must be linked to the exe-
cutable. The correct order is -lt1x -lt1 since the X interface uses functions from the
latter. Also, the X11 library must appear in the library list after -lt1x.

The Makefiles for xglyph and type1afm are typical examples for both configurations.

5.2 Querying and Setting Fundamental Configuration Parameters of t1lib

It might be necessary to know whether t1lib is compiled with or without X11 interface. At
compile time a programmer can check for the X11 interface by stating

#ifdef T1LIB_X11_SUPPORT

after including t1libx.h. If T1LIB_X11_SUPPORT is not defined, the X11 interface is not config-
ured and compiled.

At runtime, a program can check for the X11 interface by a call to

int T1_QueryX11Support(void)F()⇒

It returns 1 if the X11 interface is present and 0 otherwise.
Notice that querying X11 support at runtime and compile time tends to be pretty useless

starting with V. 0.6-beta. Any decision can be done by examining the existence of the t1x-
library and the t1libx.h header file. The definition and the function described above are thus
only provided for compatibility with pre-0.6 versions of t1lib.

Some remarks on the general data format of bitmaps and should be given here. t1lib
internally always generates bitmaps in the way that appears to be natural for them: The first
pixel corresponds to the least significant bit in a byte (or word/longword). Bytes are always
arranged in memory the way, that the first byte is at the lowest address and the next byte at
the following address. This convention is called LSBFirst which stands for Least Significant
Bit/Byte First. It is the natural way of data alignment on machines with Little Endian data
representation. In contrast MSBFirst stands for Most Significant Bit/Byte First which is the

24

natural kind of data representation on Big Endian machines. A glyph’s scanlines are always
aligned in LSBFirst-type, no matter on what machine t1lib is running.

What has been said above, strictly does only apply to non antialiased glyphs, i.e., real
bitmaps. Antialiased glyphs have their gray values coded in the representation that is natural
for the machine t1lib is running on. For example, if t1lib runs on a Big Endian machine, the
gray values are in Big Endian. The X11 displaying functions automatically handle this correct.

Scanlines of t1lib-glyphs may be padded to 8, 16 or 32 bit. Padding to higher values will
consume more memory for the glyphs, but might speed up concatenating of bitmaps as described
in 5.5. This applies to machines with Little Endian representation as, for example, Intel’s x86
series. On these machines 16 or 32 bits can be placed into the target bitmap in one step. On
machines with Big Endian representation, for example, Motorola 680x0 series, this is currently
not possible. However, using a higher padding value could still yield a better performance since
the application could work on larger units than a byte.

The default padding value in t1lib is 8 bit. The padding value can be specified at runtime
by means of calling

int T1_SetBitmapPad(int pad)F()⇒

pad must be one of ‘8’, ‘16’ or ‘32’. The call will only be successful if executed before initialization
of t1lib. This a security mechanism which prevents from having glyphs with distinct padding
values. The return value is 0 if successful and -1 if pad was invalid or t1lib had already been
initialized.

There is a further restriction concerning the padding value. Setting it to 32 is only possible
if the machine has an ANSI C integer type of 64 bits. This condition is automatically checked
by the configure script of t1lib. If such an integer type is not present (or has to be emulated
as e.g. long long in gcc) there would not result any performance gain. If a specified padding
value is rejected, T1_errno is set appropriately.

An application can query the current padding value by calling

int T1_GetBitmapPad(void)F()⇒

The returned value is the padding value. This function can be called before or after initialization
of t1lib.

Another function usually be called near initialization is

int T1_SetDeviceResolutions(float x_res, float y_res)F()⇒

This function allows setting the resolution of your device (screen). The values must be given
in dpi. The default resolution, 72 dpi, implies that a pixel in device space equals 1 bp. This
function may be called before or after initialization. The only restriction is that no size de-
pendent data must be available. Changing the resolution when bitmaps are already cached
would result in inconsistent bitmap-sizes for bitmaps generated before and after the call to
T1_SetDeviceResolutions(). The function checks whether initialization has already been
done. If not, all is OK since no size-dependent data for any font can exist. If initialization has
been done, it checks for every font whether size dependent data exists. If there’s any size depen-
dent data for any font, T1_SetDeviceResolutions() will return -1 without having set the new
resolution. Otherwise the specified resolution will be set and the function will return 0. If you
really need to set another resolution in the middle of a session, all size-specific data should explic-
itly be removed from memory beforehand. This can be achieved using T1_DeleteAllSizes()
(see 5.8).

25

Notice that the device resolution need not be set at all if the default resolution of 72 dpi in
horizontal and vertical direction is OK. This function is primarily intended to be prepared for
applications with a device aspect ratio different from 1.

5.3 Initialization of t1lib and Related Things

In this section we should cover the initialization, part of which has already been described in
2.3 in some more detail. This gives the user the chance to fine-tune the initialization for specific
applications.

Prior to be able to do anything useful with t1lib, the library has to be initialized. Generally
speaking, the purpose of the initialization is to tell t1lib which font files are associated with
which font ID’s. The existence or accessibility of the font files is also assured at this point.
Hence, file name search paths for Type 1 font files, AFM files and encoding files have also to be
known at this time.

The configuration file and the font database file play a central rôle during initialization.
While the configuration file contains path specifications and a font database specification, the
font database file specifies the relation between font ID’s and font filenames. The format of both
these files is described in 2.3 and not repeated here.

A further purpose of the initialization is to set certain flags that prevent other quantities
from being modified at a later time. For example, the padding value must be unique to all
glyphs and consequently it is not allowed to be changed after initialization has been performed.

The initialization is started by a call to the function

void *T1_InitLib(int log)F()⇒

The parameter log can be interpreted as a mode specification that influences certain parts of
the initialization. In fact it should consist of one or more #defines from t1lib.h. At minimum,
log should be either LOGFILE or NO_LOGFILE. If LOGFILE is specified, a log file is written while
the application runs, and NO_LOGFILE suppresses the generation of a logfile. For information
the t1lib-logfile see 5.4. In addition to this, IGNORE_CONFIGFILE and IGNORE_FONTDATABASE
can be bitwise OR’ed (using “|”) to the log-value. The purpose of this is described later in
this section. A further flag that might find its way into the value of log is T1_AA_CACHING.
A discussion of this topic is given in 5.13.4. The T1_NO_AFM completely suppresses usage of
AFM data, no matter if an AFM file could have been found using the current search paths or
not. This saves time for loading a font and is recommended if an application is known to be
restricted on functions that do not access AFM data. The consequences of using this flag are
covered somewhat more detailed in 5.16.2.

5.3.1 Standard Initialization

The term “standard initialization” means, that none of the path manipulating and font database
manipulating actions described later has been performed. Also, a standard initialization excludes
the use of IGNORE_CONFIGFILE and IGNORE_FONTDATABASE. If these conditions are met, the
following happens at initialization time:

1. The padding value, either being the default value or a value specified by the user before,
is assigned.

2. Next, depending on the value of log, a logfile is tried to be opened. From this point on,
depending on the loglevel and the value of log the actions are logged.

3. The endianess of the machine t1lib is running on is checked.

26

4. A configuration file is searched in the following order:

• The process’ environment is checked for the entry T1LIB_CONFIG and if found, its
value is interpreted as the filename of the configuration file (see 2.3).

• If no file was found, the user’s home directory is searched for a file named .t1librc.
In case it exists, it is used as a t1lib-configuration file.

• If still no configuration file was found, the global configuration file will be tried to be
opened.

• If this also does not succeed, all file search paths are left to be “.” and the default
font database is FontDataBase.

It should be noted that the first match wins when searching the configuration file. Only
the first one found is examined.

5. The font database file(s) are tried to be opened and read. This process is in detail described
in 2.3.3.

If after scanning the complete list of font databases, no font definitions have been per-
formed, T1_InitLib() will return with a NULL pointer indicating the initialization has
failed.

6. The number of fonts declared in the database is stored. Note that this number of declared
fonts must be greater than zero.

7. A flag is set to indicate t1lib is initialized and the pointer to the top most area of the
global data structures is returned to the application. This pointer is guaranteed to be not
NULL.

For some applications, the described initialization scheme appears to be too inflexible and
overkill. It is well suited for large applications that use lots of fonts and where it should be
possible to add new fonts without modifying the application itself. For small commandline
applications like type1afm (see 4), which are designed to read a few font file names from the
commandline, the overhead in configuration file searching and path reading is much too large.
Moreover, to insist on a font database file might grow to a real disadvantage. In the subsequent
paragraphs we should thus discuss how we can deviate from the initialization scheme described
above.

5.3.2 Fine Control over Font Databases and File Search Paths

First, it is important to mention that it is generally possible to force T1_InitLib() to skip steps
4 and / or 5 as described above.

The configuration file is discarded by OR’ing the parameter log of T1_InitLib() with
IGNORE_CONFIGFILE. The default paths or the paths explicitly specified by the application before
are then left untouched during initialization.

Discarding the font database specification from the configuration file is achieved by bit-
wise OR’ing log with IGNORE_FONTDATABASE. The result after initialization will be an empty
database. This is valid in V. 0.5 and newer since fonts may be added to the database at runtime.

Using the two flags described above, an installed setup can be ignored and an application
may have complete control over its search paths. There are a number of functions for this
purpose and each of these functions allows to specify exactly one path element at a given time.
Using special characters like white space or path separators in a path element is thus not an
issue.

27

The font database may explicitly be specified by the application using

int T1_SetFontDataBase(char *filename)F()⇒

filename is the pointer to a string containing the name of the font database file that is to be
examined. This function replaces any set of font databases setup previously and is thus usually
to be called before T1_InitLib(). A call to this function after initialization will return the
result -1 and T1_errno will be set to T1ERR_OP_NOT_PERMITTED. For the special case that the
font database is still epmty after initialization this function may also be called after initialization.
But in any case, the database must be empty! For the latter cases, fonts specified in the new
database file are then immediately inserted into the database. In case of success, the number of
available fonts is returned.

There is also the function

int T1_AddFontDataBase(int mode, char *filename)F()⇒

It can be called at any time and filename is the string of the new font database’s file name. If
called before initialization, the parameter mode can be either T1_APPEND_PATH or T1_PREPEND_PATH
and the name of the new font database simply is either appended or prepended to the existing
list of font databases. Then, the function returns 0.

If the function is called after initialization, the parameter mode is ignored and the new
database is appended in any case, because this is the only meaningful action. Furthermore, the
new database is immediately loaded and the function returns a number indicating the number
of available fonts (which can also be 0). In the case of an error, T1_AddFontDataBase() returns
−1.

There is also a pair of functions that act on the list of XLFD font database files,

int T1_SetFontDataBaseXLFD(char *filename)F()⇒

int T1_AddFontDataBaseXLFD(char *filename)F()⇒

These functions have exactly the same syntax and semantics as the functions just described
above. Standard font database files and XLFD font database files are handled in separate lists
internally, so that setting the XLFD font database will not affect explicit standard font database
settings. However, the default standard font database (./FontDataBase) will be cleared when
at least one XLFD font database is specified. This is because the default font database is meant
as a fallback, and the fallback case is no longer given if a XLFD font database has been specified.

A similar manipulation as just described for font database files, is possible for the searchpaths.
(Re-)Defining a search path is done by calling

int T1_SetFileSearchPath(int type, char *pathname)F()⇒

before calling T1_InitLib(), or respectively, before the database contains any fonts. An attempt
to set the file searchpaths when the database is no longer empty is denied. The reason is that it is
not wise to override the searchpaths which had been valid previously during the verification of the
existence of font files. Such paths should thus not be removed. The parameter pathname points
to the string that contains the pathname that should be used as searchpath. The parameter
type is any OR’ed combination of T1_PFAB_PATH, T1_AFM_PATH and T1_ENC_PATH. These tell the
function to set the search paths for Type 1 font files, AFM files and encoding files, respectively.
In case of an error -1 is returned and otherwise 0.

28

Extending the file searchpaths before and after initialization is possible using

int T1_AddToFileSearchPath(int pathtype, int mode, char *pathname)F()⇒

This might be useful to locate font files that were of no interest at the time of initializa-
tion. pathname is the pointer to the string that should be added to the searchpaths. Only
one particular path element may be specified in one call. What searchpaths are affected is
determined by the parameter pathtype. Again, similar to described above, any OR’ed com-
bination of T1_PFAB_PATH, T1_AFM_PATH and T1_ENC_PATH is valid. There are two ways to
extend an existing searchpath which are specified by the mode parameter. It must be either
T1_APPEND_PATH or T1_PREPEND_PATH, which causes the new path element to be appended or
prepended to the existent path respectively. Since an existent path specification is not over-
written by T1_AddToFileSearchPath(), this function may be called at any time before or after
initialization.

It might also be of interest to query the current file search paths and font databases. t1lib
provides

char *T1_GetFileSearchPath(int type)F()⇒

for querying search paths. Again, the parameter type determines what search path is returned.
Exactly one of T1_PFAB_PATH, T1_AFM_PATH, T1_ENC_PATH and T1_FDB_PATH should be specified.
If more than one path is specified, the first match wins and only one path is returned. The types
will be checked in the order T1_PFAB_PATH, T1_AFM_PATH, T1_ENC_PATH and T1_FDB_PATH. Here,
T1_FDB_PATH indicates an interest in the list of font databases. The paths are separated using
the current path separator.

5.3.3 Adding Fonts to the Database

Extending the font database is possible at any time after initialization. In addition to using
T1_AddFontDataBase() (see above), it is done via a call to

int T1_AddFont(char *fontfilename)F()⇒

fontfilename is the pointer to the filename string. The following actions take place:

• The font file is searched using the current search path specifications.

• If the file has been located, it is checked whether the font database contains enough
memory to hose an additional font. If so, the font filename is stored and the function
returns new_ID, which is the font ID that will be associated with this font in the future.

• If there was no free memory for an additional font, the memory is reallocated to a greater
size. This involves also resetting the new area. Finally the value new_ID is returned.

If a negative value is returned the function failed. -1 indicates the font file could not be located.
-2 or -3 are returned if a memory allocation failure occurs.

5.3.4 Summary of Search Path Handling

Since the exact handling of search path specifications at the several stages may appear somewhat
confusing we shall summarize the exact rules now:

29

1. Before Initialization
Default paths are not yet setup. Each call of one of the T1_Set...() functions described
above establishes a completely new respective path. Each call of one of the T1_Add...()
functions extends the respective path in the desired manner, or creates a new respective
path if previously no path existed.

2. At the Beginning of the Initialization
Each path type for which a path had not already been explicitly created using the
T1_Set...() or T1_Add...() functions receives a default value. This is “.” for the file
search paths and ./FontDataBase for the font database.

3. During Initialization
Each path element read from the configuration file overwrites an existing respective default
path but preserves an existing respective explicitly setup path by appending to the latter.
The newly setup search path is used to locate files while scanning the font database file(s).

4. After Inititialization but before the Database is being filled
At this stage, all T1_Set...() and T1_Add...() functions still work as described un-
der (1). Notice that this phase usually is not accessible when using the standard initializa-
tion scheme. It only becomes accessible if no fonts have been added during initialization.

5. After at least one Font is insterted into the Database
Once there are fonts in the database, the paths setup up to now must be preserved in any
case. Hence, the T1_Set...() may not be called any longer. The T1_Add...() functions
extend the current set of search paths. In particular, possibly existing default search path
elements, then, are not overwritten any longer because they might have been used before
to verify the existance of required files.

A call to T1_AddFontDataBase() will not only append the specified file name to the existing list
of databases, but will also immediately locate the fonts specified therein and assign additional
font IDs.

5.3.5 Bypassing the t1lib File Search Machinery

Usually, t1lib takes care for locating files according to the path specifications in the configu-
ration file. There might, however, arise the need to explicitly tell t1lib which particular file
to use. Forcing t1lib to use particular Type 1 font files can be achieved using the function
T1_AddFont(), described just above. If a pathname passed to this function is a complete path,
t1lib will use this complete path to locate the font file, forgetting about its own search path
list. A filename path is assumed to be complete if

• it starts with the directory separator character, usually “/”. In this case it is an absolute
path specification, meaning that the start point is at the root of the filesystem, or

• if it starts with “./” or “../” (where it is assumed that “/” is the directory separator
character). Here we have a relative path specification in which “.” refers to the current
working directory while “..” refers to the parent directory of the current working directory.
Since the notion of the current working directory is fundamental for every process that has
access to a filesystem, a relative path specification also uniquely identifies one particular
file in the filesystem.

If a font file whose complete path had been specified could not be found by t1lib, the paths
from the configuration file are searched as a fallback mechanism.

30

What can be done for the Type 1 font files is also possible for AFM files, which are needed
on a per-font basis. The function

int T1_SetAfmFileName(int FontID, char *afm_name)F()⇒

allows to set the complete path of the AFM file belonging to the font identified by FontID,
overriding the internal search mechanism. This function is to be called after initialization but
before the font FontID is loaded. It returns 0 if all goes right and −1 otherwise. In the latter
case T1_errno will also be set appropriately. Notice that FontID must also be valid with respect
to its upper limit, it is an error condition if the font database has less than FontID entries.

There is also the function

char *T1_GetAfmFileName(int FontID)F()⇒

which allows to query the AFM filename of a font. It returns a pointer to the filename if it had
explicitly been specified or NULL otherwise. NULL will also be returned if FontID was invalid. In
this case also T1_errno will be set.

Just for the sake of completeness we should mention that what has been said about absolute
and relative path specification also applies to pathnames for encoding files (see 5.7).

5.4 The t1lib-Logfile

Since version 0.2-beta t1lib supports a runtime logfile. It implements an uncomplicated way to
keep track of errors, warnings, statistics and debug messages without overloading stdout/stderr.
As seen in 5.3 the user must specify whether or not to use a logfile when calling T1_InitLib().
Specifying LOGFILE as argument leads to using a logfile and NO_LOGFILE suppresses the use of
a logfile.

The name of this logfile is by default t1lib.log. This name is defined in t1misc.h and can
be changed there as the user likes.

Basically t1lib distinguishes 4 types of runtime messages. Each type is associated a
“loglevel”:

• Errormessages/Level1: They are considered that important that the user is in any case
informed. Example: During initialization the memory allocation for one of the basic data
structures of t1lib failed.

• Warningmessages/Level2: They are considered important but it is not absolutely necessary
to inform the user. Example: An AFM file could not be loaded for a given font. This
imposes several restrictions on what can be done with that font but it is possible to generate
bitmaps.

• Infomessages/Level3: They do not indicate a problem. Rather, the user is notified about
some facts and statistics that might be of interest. Example: After loading a font the
consumption of virtual memory is displayed.

• Debugmessages/Level4: These can be pointers, numerical data etc. Example: Print out
the pointers that point to the memory area where the PostScript dictionaries for a font
just loaded are located.

The decision what message to put into the logfile is done by examining the value of an integer
variable whose values can be T1LOG_ERROR (=1), T1LOG_WARNING (=2), T1LOG_STATISTIC (=3)
or T1LOG_DEBUG (=4). All messages whose level is below or equal to this value are put into the
logfile. The user may set this loglevel by calling

31

void T1_SetLogLevel(int level)F()⇒

The default value is T1LOG_WARNING which means that error and warning messages are stored
in the logfile.

If the usage of a logfile has been specified, t1lib tries first to open it in the current directory.
If this fails for some reason t1lib tries to create it in the user’s home directory. If this fails too,
an error message is printed to stderr and no logfile is used.

If the application programmer chose not to create a logfile, it would be hardly possible for
a user to track down possible problems, e.g. in file searching. To overcome this disadvantage,
the user may set an environment variable T1LIB_LOGMODE at runtime. This variable is evalu-
ated by t1lib when T1_InitLib() is called. If its value is one of the four strings logDebug,
logStatistic logWarning and logError, the respective loglevel is set by t1lib and a log file
is created, even if the programmer chose not to do so. However, if the programmer had altered
the log level after calling T1_InitLib(), this cannot be catched by setting the environment
variable. A log file is created anyhow so that at least error messages will be logged.

The user himself may also put some messages into the logfile. This can be achieved using

void T1_PrintLog(char *func_ident, char *msg_txt, int level, ...)F()⇒

where func_ident is a pointer to a string identifying the function that generates the message.
msg_txt points to the text string to put out. The distinction between a function identifier and
a message text is only formal, indicating the user should identify the function that generates
the message.

The string msg_txt may contain format character sequences, %.. , as known from the printf-
or scanf standard C functions. In this case, the ellipses indicate that a variable list of further
arguments may follow. The level specification works as described above: The message is only
put out if the internal loglevel is equal or greater than level.

Here is a typical example of a log file after a (short) xglyph-session in which the loglevel
was set T1LOG_STATISTIC. Among several informative messages of type S, also two messages of
type W have been generated. They stem from trying to raster the character “ß” which was not
in the current encoding.
(S) (Mon Jul 14 18:27:34 1997) T1_InitLib(): Initialization started

(S) (Mon Jul 14 18:27:34 1997) T1_InitLib(): Initialization succesfully finished

(S) (Mon Jul 14 18:27:44 1997) T1_LoadFont(): VM for Font 0: 35132 bytes

(S) (Mon Jul 14 18:27:44 1997) CreateNewFontSize(): New Size 100.000000 created for FontID 0 (antialias=0)

(S) (Mon Jul 14 18:27:53 1997) CreateNewFontSize(): New Size 100.000000 created for FontID 0 (antialias=1)

(S) (Mon Jul 14 18:27:53 1997) CreateNewFontSize(): New Size 200.000000 created for FontID 0 (antialias=0)

(W) (Mon Jul 14 18:27:53 1997) T1_SetChar(): No black pixels found for character 223 from font 0, returning NULL

(W) (Mon Jul 14 18:27:53 1997) T1_SetStringX(): T1_SetChar() returned NULL-pointer!

(S) (Mon Jul 14 18:27:55 1997) T1_DeleteSize(): Size 200.000000 deleted for FontID 0 (antialias=0)

(S) (Mon Jul 14 18:27:55 1997) T1_DeleteSize(): Size 100.000000 deleted for FontID 0 (antialias=0)

(S) (Mon Jul 14 18:27:55 1997) T1_DeleteSize(): Size 100.000000 deleted for FontID 0 (antialias=1)

5.5 Generating Bitmaps

At this point, you are able to generate a bitmap. As said before, a character- or string-bitmap
is given to the user as an object of type GLYPH. We should briefly explain GLYPH here. The type
is defined by

typedef struct
{

char *bits;
struct
{

int ascent;

32

int descent;
int leftSideBearing;
int rightSideBearing;
int advanceX;
int advanceY;

} metrics;
void *pFontCacheInfo;
unsigned long bpp;

} GLYPH;

bits is a pointer to the bitmap data. The bitmap is organized in lines, starting with the
uppermost line. Each bitmap pixel is usually represented by one bit. If the width of the bitmap
is not an integer multiple of 8, the lines are padded with zeros, so that each line starts at a byte
boundary. Note that the bitmap has no margins taken into account. The bitmap occupies the
minimum area the character needs to be painted.

The bitmap pointer may also be the NULL-pointer. In this case, the glyph contains no
foreground pixels. The metrics of the corresponding glyph should be valid, though. Typically,
this appears for the space character as well as in situations where an undefined or unencoded
character had been substituted by the .notdef-character within the rastering functions.

Note that the pixmap-entry which has been present in version 0.3-beta, has been removed
with version 0.4-beta. See the discussion on the X11-interface in 6 for an explanation of this.

The struct metrics contains metric information that is needed to position the character and
to describe the character origin with respect to the bitmap. The members in detail:

• metrics.ascent: describes how many lines the bitmap ranges above the line y = 0.

• metrics.descent: describes how many lines the bitmap ranges below the line y = 0.
Width below y = 0 counts negative so that the difference ascent − descent is the total
height of the bitmap, the number of lines.

• metrics.leftSideBearing: The amount of spacing between the origin of a character and
the x-coordinate of its leftmost painted pixel. One could also name it “left margin” of the
character.

• metrics.rightSideBearing: The horizontal difference between the origin of a character
and the x-coordinate of its rightmost painted pixel. This definition stands in contrast to
some other interpretations of the right side bearing, where it is assumed as the difference
between the glyph’s width and its right most pixel.

• metrics.advanceX: The amount of position increment in horizontal direction after this
character bitmap (or string bitmap) has been placed. It is almost always larger than the
bitmap width because most characters contain a certain amount of margins. Note that this
value is not suitable for internal computations of character positions since it contains the
horizontal escapement rounded to the pixel grid. Using this value for such computations
leads to accumulating positioning errors.

• metrics.advanceY: The amount of position increment in vertical direction after this char-
acter bitmap (or string bitmap) has been placed. Upper direction counts positive.

As seen, the width of the bitmap is given as the difference between rightSideBearing and
leftSideBearing and the values metrics.leftSideBearing, metrics.descent,
metrics.rightSideBearing and metrics.ascent effectively describe the bounding box of the
glyph.

33

The entry pFontCacheInfo is not currently used but will probably later when font caching
is really implemented. Moreover, there’s a certain chance that some other entry will be added
in future releases.

The member bpp is used to store the depth of the bitmap. For true bitmaps, it is always 1.
See 5.13 for an explanation.

There are three basic functions which produce pointer to glyph objects. In order to generate
the glyph for a single character you would use the function

GLYPH *T1_SetChar(int FontID, char charcode,
float size, T1_TMATRIX *transform)F()⇒

As in most other functions, FontID is a valid identification number of a font. It can range from
0 to n− 1, where n is number of fonts declared in the font database file.

The second argument charcode determines the character that will be rasterized. As men-
tioned earlier, the encoding mechanism is used for accessing the output character. This means,
if ’A’ is given as the character code, the machine representation of ’A’ is used as an index
into the current encoding vector. In this encoding vector, the characters’ name is looked up.
Encoding vectors may be changed by the user (see 5.7).

The parameter size is interpreted in Postscript’s bigpoint-unit (bp). By default, 1 bp equals
one device pixel.

transform specifies the transformation that will be applied to the character before rastering.
If this pointer is NULL, no transformation is used. Otherwise it should point to a valid t1lib-
transformation matrix. Please refer to 5.11 for information on how to easily create T1_TMATRIX
matrices. Hinting is only performed if the transformation is a pure rotation and if the the angle
is one of 0, 90, 180 or 270 degrees. Otherwise font level and character level hinting information
is ignored.

Bitmaps of transformed characters are never saved in cache memory since I assume that they
are rarely needed. The overhead to manage transformed characters in cache would be overkill
and would significantly increase memory consuming. Anyhow, this would only work for some
dedicated transformations.

T1_SetChar() in fact does some more things than simply rastering the specified character:

• It checks whether the font in question is already loaded. If not, it is loaded.

• If the size dependent data structures for the size in question do not exist, it creates them
and inserts them in the linked list of size dependent data structures.

• It checks if the character is already existent in cache. If so, it returns the data from cache.

Some words concerning memory management: The memory used by the GLYPH-structure
is static in this function. The memory required for the bitmap is also allocated by the func-
tion itself. This means, the user doesn’t need to free any memory by himself. Every time
T1_SetChar() is called, it starts by giving the memory needed for the last generated glyph free
or respectively setting metric values to 0. Thus, do not free the returned glyph pointer since
later T1_SetChar() will free memory that is no more allocated and probably used for some
other purpose. If you really like to free the memory, set the pointer to NULL afterwards.

If an error occurs at some point, T1_SetChar() returns a NULL-pointer to the user.
Frequently it is advantageous to raster a series of characters at once. This has the advantage

that internal accuracy may be used and the overhead for the user is minimal. For such cases,
the function

34

GLYPH *T1_SetString(int FontID, char *string, int len,
long spaceoff, int modflag,
float size, T1_TMATRIX *transform)F()⇒

is provided. It can be considered an extended version of T1_SetChar(). The same as said above
applies to the arguments FontID, size and transform. But a few additional arguments are
needed here.

string is a series of bytes representing the indices into the current encoding vector. The
len-parameter is needed because we cannot imply that string is always an object like a string in
C. For example, the Computer Modern Roman fonts contain the uppercase Greek Gamma (Γ) at
position 0 in their internal encoding. In a string to be typeset the value 0 is thus a valid value and
deserves no special treatment. Hence, we cannot not use the C-function strlen() to compute
the length of the string. However, since in most usual encodings the special value 0 is not
encoded (“.notdef”), it makes sense to switch between standard situations and non-standard
situations:

• If string is a string conforming with C-semantics, len can be set to 0. Then, the length
of the string is internally computed.

• If string contains one or more control characters which make processing impossible, the
len-value must be specified explicitly.

The spaceoff parameter is important for word processing purposes. The value specified
here is interpreted as an offset to the space width used during rastering. It is interpreted
in charspace units, i.e., 1/1000 bp. Every time a space character is requested, this amount of
horizontal escapement is added to the natural spacewidth of the current font. Note that the space
character itself is actually not rastered. All requests to the character with the charactername
“space” are caught by t1lib and converted to a simple horizontal escapement. For computation
of the resulting spacewidth, the width of the space-character is taken from the AFM data and
merged with the specified offset, which may also be negative.5

The modflag argument may be used to specify some option to the rastering function. It is
generally 0 or an OR’ed combination of the following names:

• T1_KERNING: As the name implies, this argument determines that pairwise kerning informa-
tion from the AFM file is to be taken into account during string rastering. Not specifying
T1_KERNING means: “omit kerning”. It is generally recommended to use kerning informa-
tion since this improves the optical appearance. However, many lower quality fonts do not
have kerning information. With t1lib V. 0.4-beta, kerning information is accessible much
faster than before because it is based on char codes rather than on characternames.

• T1_RIGHT_TO_LEFT: Setting this flag will invert the writing direction. In Right-To-Left
mode the escapement in writing direction (left) is inserted before placing the character
with the result that the character laps over to the left side. This principle is kept for
all characters in the string. Note that metrics of fonts that are intended for Right-To-
Left typesetting have the same meaning as for fonts intended for standard (Left-To-Right)
typesetting.

• T1_UNDERLINE: The string to be rastered is to be underlined according to the line specifi-
cations of the current font.

5One consequence of this handling is, that—with a little tricking—fonts that do not define a space character
themselves may be used for typesetting. This applies to the dc-fonts, which only define a visible space, but no
real space (see 3.7).

35

• T1_OVERLINE: The string to be rastered is to be over lined.

• T1_OVERSTRIKE: Same here for overstriking.

For a description of underlining and such, see 5.9. Notice also that the modflag argument is a
replacement of the kerning argument from pre-0.7 versions of t1lib.

Concerning glyph-memory considerations, the same applies as said under the description of
T1_SetChar(): Never free a pointer to memory which was returned by T1_SetString(). Or,
alternatively, if freeing the pointer cannot be avoided set it to NULL after freeing it.6

There are two generic ways how a string-glyph can be produced. The first is to take the
paths of all characters needed, concatenate them, insert space and kerning amounts as needed
and raster the resulting whole path. This will yield the best results since the average position
accuracy of the pixels will be optimal. This applies especially for rotated strings. The drawback
is, that every character must be rastered every time it is needed. There is no way to access
the bitmap data of a character inside a rastered string separate from others. And the caching
of string-glyphs at this programming level doesn’t make any sense. So this principle takes
significantly longer than concatenating bitmaps from a cache area. However, it is done when the
specified rotation angle is not equal to 0◦ or when even further transformation are to be applied.
This condition should limit the total number of situations when this happens to an amount we
can easily bear.

If the transform-argument is NULL we know transformations or rotation should not be
applied and another approach is used. We are then able to construct the resulting bitmap by
adjusting already existent bitmaps into proper positions. If a character does not already exist in
the cache, it is generated just the way T1_SetChar() works. The calculation of the character-
bitmap positions in the output bitmap is done with char space-precision. Nonetheless, there may
be differences in the output compared with output of the above method. These are caused by the
fact that rounding to pixel accuracy has already been achieved when generating the character
bitmap. Thus, the output of the above principle should always be better since the positions of
the black pixels are rounded with respect to the whole string, and not with respect to a single
character glyph. On the other hand, concatenating character glyphs takes significantly less time
than rastering a complete string. Theoretically, differences of up to two pixels horizontal shift
may appear in the output of the two principles. You can check the effect by running the program
xglyph. Specify a string of enough length and raster it at angle 0◦. Then specify a very small
angle from 0 different, say, 0.001◦, and raster the string again with the new setting. You might
find that the representation of the string is a little different now.

The third function that creates a glyph object is

GLYPH* T1_SetRect(int FontID, float size,
float width, float height,
T1_TMATRIX *transform)F()⇒

Calling this function yields a filled rectangle. It is intended for situations where a TEX-style
\vrule would be appropriate, or, for equations in mathematical typesetting.

First, the argument FontID identifies a valid font. At this time, it is not obvious why a
valid font is required in order to create a rectangular glyph. The reason is, that some of the
parameters that are associated to a particular font are also relevant for creating rectangles in
the context of that font. Hence, specifying a font identifier in this case is a means of stating
“draw a rectangle that visually fits to the style of the font FontID”. Aside from this, I assume

6For example, XDestroyImage() gives the pixel memory for the image data free although it might not have
been allocated by any X11-function.

36

that each application that uses t1lib deals with at least one font so that the FontID parameter
actually does not hurt.

The size of the rectangle is to be specified in charspace units by means of the parameters
width and height, and is moreover subject to scaling through the parameter size. By definition,
the typographical fundamental area of a font, known as the em-square, is just as high and as wide
as the design size of the font. In charspace units, this rectangle exactly maps to a 1000×1000 grid.
Or alternatively spoken, one charspace unit is 0.001bp (Big Point). For example, in order to draw
an em-square for some font at 13 points, the correct parameters are size = 13, width = 1000
and height = 1000. If absolute physical dimensions are desired, the scaling explicitly must be
calculated by the user. For instance, in order to produce a 1cm× 1cm square we find

h = w = 1cm
72bp/in× 1000cs/bp

2.54cm/in
≈ 28346 cs.

Here “cs” designates charspace units and size is assumed to be 1. Note that still the device
resolution must be properly setup in order to make the dimensions appear accurately on the
device.

The parameter transform is a pointer to a t1lib transformation matrix. If it is NULL,
the current transformation of the font in question is used. Depending on the kind of actual
transformation, the rectangle might also image as a nonrectangular shape. This happens, if the
current font is slanted, then the rectangle will be skewed.

Glyphs produced by the rectangle function are never cached because there is no means in
doing so. With respect to memory management, the same applies as for T1_SetChar() and
T1_SetString(). Since rectangles rarely are used to produce normal text flow, the glyphs
produced by the rectangle function do not cause any escapement.

If two glyphs with arbitrary orientation exist,

GLYPH *T1_ConcatGlyphs(GLYPH *glyph1, GLYPH *glyph2,
int x_off, int y_off, int modflag)F()⇒

can be used to concatenate them. First the size of the resulting glyph is computed and its metric
values are filled. Then, the two glyphs are placed at their appropriate positions in the newly
created bitmap. In order to be able to work, the following conditions must be met:

1. Either glyph must be different from NULL.

2. Both glyphs must have identical bpp-values. If antialiased and non-antialiased glyphs are
to be concatenated, have a look at

3. There must be enough memory for the new glyph (naturally).

The quantities x_off and y_off describe the x- and y-component of an optional offset to be
inserted between the two glyphs. This offset is interpreted as device pixels. The modflag
argument is used to specify the direction in which the two glyphs are to be concatenated. That
is, only the bit T1_LEFT_TO_RIGHT / T1_RIGHT_TO_LEFT is respected by this function.

If problems occur, NULL is returned. It is generally not recommended to produce large glyphs
with this function because the char space precision in placing the character bitmaps is lost. For
example, three times rounding up an advance by 0.3 pixels accumulates to 1 pixel position error.
A similar effect shows up when two rotated and underlined glyphs are concatenated with this
function. There might be a slight shift in the baseline at the point where the two glyphs touch.

A dilemma occurs, if two antialiased bitmaps have distinct background colors. Then, it is not
clear what the transparent color is. T1_ConcatGlyphs() always assumes the current background
color to be transparent.

37

There is one more function that generates pointers to glyphs:

GLYPH *T1_CopyGlyph(GLYPH *glyph)F()⇒

As mentioned earlier, the user doesn’t have the possibility of keeping the glyphs longer than
to the next call of the respective rastering function. If someone wants to keep a bitmap some
time longer, T1_CopyGlyph() may be used to copy the glyph to another area which is then
completely under user’s control. This function simply does the following:

• Allocates the memory for the glyph-structure.

• If bitmap data is present, it allocates memory for the bitmap data, taking the member
bpp into account (see 5.13).

• Copies the structure and the bitmap data to the respective locations.

• Initializes the pointer glyph.bits.

Return value is the pointer to the allocated glyph-structure. If something goes wrong, NULL
is returned to indicate an error. A glyph pointer, returned by a call to this function should be
freed by a call to T1_FreeGlyph() (see 5.8).

5.6 Loading Fonts Explicitly

Usually there is no need for a user to load a font into memory since this is done automatically
as needed by the rastering functions. But there are two situations where it makes sense to
explicitly load a font before generating any size dependent data:

• A font is to be reencoded immediately after loading (see 5.7).

• A font is to be transformed (see 5.11).

These operations require a font being loaded but not having any size specific data. Loading a
font explicitly is done by the function

int T1_LoadFont(int FontID)F()⇒

Loading a font involves several actions:

• Locating and loading the Type 1 font file.

• Locating and loading the font metrics data from AFM file.

• Computing and filling the values of the FONTPRIVATE structure as described in section 7.

• Setting up some tables for fast access of metrics information.

T1_LoadFont() returns 0 if successful or -1 if the font could not be loaded. A failure may be
due to t1lib not having been initialized or due to problems with file locations and file parsing.
If a font refuses to load, the logfile should be examined first. Furthermore, in case of a failure
T1_errno will be set appropriately.

38

5.7 Functions for Encoding Handling

As mentioned earlier, the encoding mechanism used in the PostScript-language allows a font to
contain more than 256 different characters, although only 256 are accessible at a given time.
The characters which are accessible are given by the elements of the current encoding vector.
In order to maximize flexibility, t1lib allows for changing the current encoding vector. This
is also called “Reencoding a font”. A new encoding vector is defined and made known to the
library by creating an encoding-file and loading its contents into memory. Before describing the
functions needed for this, we should briefly describe the format of an encoding file.

An encoding file is an ASCII text file. No assumptions about filename extensions are made.
Here are the rules for scanning the file:

• The file contents are completely ignored until a line is encountered that starts with the
string Encoding=. This string may optionally be immediately followed by a string that is
assumed to be the identifier of the encoding scheme that this file defines. Any further text
on this line is ignored.

• Now, 256 lines have to follow, each line describing one character’s name. The string
ranging from the beginning of the line to the first white space character is assumed to be
a character name. The remainder of the lines is ignored and may (should) be used for
comments, thereby describing the current character code.

• All further lines of text are ignored.

As well known from PostScript, non-existent characters have to be named .notdef.
Here’s an example of such an encoding file:

Sample encoding file for t1lib!
The first two lines are considered to be comments!
Encoding=ISOLatin1Encoding
.notdef /* ’000 000 "00 */
.notdef /* ’001 001 "01 */
.notdef /* ’002 002 "02 */

. .

. .

. .
greater /* ’076 062 "3E */
question /* ’077 063 "3F */
at /* ’100 064 "40 */
A /* ’101 065 "41 */
B /* ’102 066 "42 */

. .

. .

. .
yacute /* ’375 253 "FD */
thorn /* ’376 254 "FE */
ydieresis /* ’377 255 "FF */

Since V. 1.2, t1lib is also able to load encoding files in the format used by dvips. This
makes a large set of existing encoding files available to the user. When parsing dvips encoding
files, t1lib requires PostScript syntax. This means white space may be interspersed freely and
line comments are defined by the character %. The mark-characters, [and], are considered
as special tokens and need not be preceded or followed by white space. Similarly, the literal

39

escape character / delimits a preceding token without interspersed white space. When parsing
dvips encoding files, t1lib tolerates less than 256 character name definitions. If characters are
missing, they are substituted by .notdef until the counter reaches 256. Aside from comments, no
PostScript tokens are allowed after the encoding definition in a dvips encoding file is complete.

With the defining terms above, it turns out that a file which has successfully been scanned
as a dvips encoding file, cannot specify a valid t1lib encoding after the PostScript encoding
definition is complete (because no valid character name can start with % and because at least
a line such as Encoding=, would have to follow the PostScript encoding). Hence the file format
are mutually exclusive and it is possible to read both format using one function. In a first pass
t1lib tries to read the file as a dvips encoding file, and if that fails, it assumes to have a t1lib
encoding file.

Once such an encoding file of either type has been created, it can be loaded into memory.
This is done with the function

char **T1_LoadEncoding(char *filename)F()⇒

The function will use the search path definitions read from the configuration file during initial-
ization (see 2.3, ENCODING=). If no errors occur, an array of pointers to strings is created and
initialized. The start address of this pointer array is returned as a double pointer to a char.
This pointer is intended to be used to reencode a font via T1_ReencodeFont(). If the encoding
data structure could not be created, NULL is returned to indicate the error.

The memory allocated by T1_LoadEncoding() is organized in two continuous blocks. One
block is the pointer array of size 2577 and the other block contains the character name strings
plus the encoding scheme specification, separated by ASCII-zeros. This memory can be returned
to the system using the function

int T1_DeleteEncoding(char **Encoding)F()⇒

t1lib does not check whether a valid pointer value was passed. So be careful to pass the correct
pointer. An error in this function should almost always be followed by a segmentation violation.

A newly loaded encoding is applied to an existent font by calling

int T1_ReencodeFont(int FontID, char **Encoding)F()⇒

FontID must be a valid font identification and Encoding a pointer returned from a successful
call to T1_LoadEncoding().

There are two requirements in order to reencode a font:

1. The font must already have been loaded into memory.

2. No size-dependent data exists for this font. If it does, it must be removed explicitly prior
to calling T1_ReencodeFont().

It follows that there are two ways to reencode a font. The first is to load a font explicitly and
reencode it before any size dependent data is created. The second is to use an automatically
loaded font and delete all of its size dependent data before reencoding it.

The user may also specify the special pointer NULL as the Encoding-argument. This would
reencode the font to its internal encoding vector.

In case of success, the function returns 0, otherwise -1 is returned.
7This number results from 256 charactername pointers plus one pointer to the encoding scheme identifier.

40

Reencoding a font takes a considerable amount of time since the mapping tables have to be
reorganized. In situations where it is à priori foreseeable that the font will be reencoded using
some standard encoding vector, it makes sense to assign that particular encoding vector as the
default encoding vector, thereby overwriting the internal encoding vector of each font at load
time before the mapping tables are setup. Setting the default encoding can be achieved using

int T1_SetDefaultEncoding(char **Encoding)F()⇒

Here Encoding encoding is assumed to be a valid t1lib encoding vector, e.g., created by a call
to T1_LoadEncoding. T1_SetDefaultEncoding() has to be called after initialization. It returns
0 if this condition is fulfilled and -1 otherwise. In the latter case T1_errno is set appropriately.
Notice that the internal encoding of the font is still accessible by reencoding the font using
NULL as encoding specification (see above). Note further that the default encoding vector is only
applied to those font that have StandardEncoding as internal encoding. This is to prevent fonts
like ZapfDingbats, Symbol or Sonata8 from being reencoded automatically at load time because
this would be surely inappropriate for such fonts.

It is also possible to query the encoding scheme that the font associated with FontID uses.
This is achieved with the function

char *T1_GetEncodingScheme(int FontID)F()⇒

The return value is a pointer to a string which describes the encoding scheme in question. The
are 3 possible cases:

• The font uses Adobe StandardEncoding, which is internally known by the rasterizer. Then,
StandardEncoding is returned.

• The font defines its own encoding by dup n LiteralName put statements. In this case no
particular name is associated with the encoding scheme and FontSpecific is returned.

• The encoding is externally loaded by T1_LoadEncoding(). Then the encoding scheme
entry of this file is returned. If this (optional) entry is not specified in the file, Unspecified
is returned.

Notice that the name of the encoding scheme is also accessible as Encoding[256] where Encoding
is the pointer returned by a successful call to T1_LoadEncoding().

5.8 Deleting Data

In frequently appearing cases, it may be wise to return some memory which was explicitly or
automatically allocated by the library back to the system.9 For this purpose some functions are
available. To understand how size dependent data for a font is organized, see (7).

The memory amount required by the size-dependent data of size and font FontID is freed
by calling the function

int T1_DeleteSize(int FontID, float size)F()⇒

The data deleted includes the metric information for 256 characters, some pointers, associated
bitmap data (if already existent) as well as the font matrix for that size.

8A musical notation font.
9This is especially true, since there is presently no caching algorithm which automatically takes care of this.

41

As described in section 7, the data structures containing size-dependent information of a
particular font are organized as a linked list. T1_DeleteSize() takes care that a properly
linked list is left after deleting the data.

If the combination of size and FontID does not exist, -1 is returned. If the operation was
successful, the return value is 0.

For the purpose of removing all size-dependent data for a particular font, there is the function

int T1_DeleteAllSizes(int FontID)F()⇒

It recursively removes all size-dependent data for the font FontID. This may be appropriate if
a user knows some font not to be needed any longer. This function is also to be used, if one
intends to reencode a font for which size dependent data has already been generated. In addition,
font transformations such as slanting and extending require a font having no size-specific data.
T1_DeleteAllSizes() recursively calls T1_DeleteSize() to do its job. It returns the number
of sizes removed (including 0 if no sizes were existent) or -1 if an error occurred.

It is also possible to remove the entire data associated with a particular font from memory
using

int T1_DeleteFont(int FontID)F()⇒

T1_DeleteFont() goes one step beyond the above functions and removes all the data associated
with the font FontID. This includes:

• All size dependent data.

• All data from the Type 1 font program, held in memory.

• All AFM data kept in memory.

The memory reserved for a font in hierarchy-level 1 is not returned to the system since it is
simply one element in the array of structures of type FONTPRIVATE (see 7). But all entries in
this structure are reset to initial values.

Whether it is useful or not, a font that has been removed using T1_DeleteFont() may also
be loaded again, explicitly or implicitly.

There is a restriction, which has not yet been mentioned: A font may only be removed if
it is a physical font (to be explained later) to which no logical fonts refer or if it is a logical
font.10 A reference counter is maintained in each physical font to check for this. If the font
to be removed is a logical font, the FONTPRIVATE area is reset and the reference counter of the
referenced physical font is decremented. Of course, size dependent data is removed in every
case.

T1_DeleteFont() returns 0 if the font has been removed correctly or if the font was not
loaded. n (> 0) is returned if the font was physical and was referenced by n logical fonts. A
return value -1 indicates an invalid FontID.

The function

int T1_FreeGlyph(GLYPH *glyph)F()⇒

returns memory allocated by T1_CopyGlyph() back to the system. This function should not be
applied to the pointer to a glyph returned by one of the rastering functions. As said earlier,
these functions manage the memory areas by themselves.

Similarly, the function
10See 5.15 for explanation of logical fonts.

42

int T1_FreeCompCharData(T1_COMP_CHAR_INFO *cci)F()⇒

returns memory associated to the composite caracter data structures, as allocated and returned
by T1_GetCompCharData() or T1_GetCompCharDataByIndex() (see Section 5.18), to the system.
In order to avoid memory leaks, each call of the latter two functions should be followed by a
call to this function.

In order to close the library and return all memory to the system,

int T1_CloseLib(void)F()⇒

should be used. If no problems occur, 0 is returned. The value 1 indicates problems during
freeing data. In this case the logfile should be examined. After having freed all data the file
search paths, if different from the defaults, are restored. Last, the logfile is closed.

5.9 Underlining, Overlining and Overstriking

t1lib supports underlining, overlining and overstriking for the string rastering functions. These
lines are always drawn on the fly as the bitmaps are generated. In writing direction, the lines
range from the glyph’s origin to the glyph’s width. The vertical dimensions are set the following
way by default when a font is loaded:

• Underlining: Underline position and thickness are taken from the Fontinfo dictionary of
the respective font. The rule is vertically centered with respect to the mathematical line
given by the position value.

• Overlining: The position is computed to be y = a + |u| where a corresponds to the
typographic ascender and u is the underline position from the Fontinfo dictionary. As
above, the rule is vertically centered around this position value. The thickness is set to
underline thickness.

• Overstriking: The position is y = a/2 where again a is the typographic ascender of the
font and vertical alignment of the rule is done by centering around the computed position.
The thickness is set to underline thickness.

As all information in AFM files, thickness and position specifications are interpreted in charspace
units.

Notice that the typographic ascender is not determined by the Type 1 font program. It
has to be guessed by t1lib. The problem of guessing the typographic ascender is discussed
in more detail in 5.16.3. When loading a font, this typographic ascender is assumed to be the
vertical coordinate of the upper right corner of the bounding box of the letter “d”. This is not as
advanced as the procedure described in 5.16.3, but it suffices because the underlining positions
can later be overwritten by the user (see below).

From the mathematical point of view, the line rules are an integral part of the rastered path.
It follows that line rules may appear sheared if a font has been artificially slanted and the size
and/or thickness is sufficiently large.

A look into real Type 1 font files shows that even fonts of the same family possess incompat-
ible values for underlining. For example, Bitstream Charter Roman defines underline thickness
to be 61 and its bold variant assigns a value of 90. Underlining text consisting of Roman and
bold words will not be very pleasing using these values. For this reason t1lib provides a way
for explicitly setting and overwriting the default values for line ruling on a per-font level. The
functions

43

int T1_SetLinePosition(int FontID, int linetype, float value)F()⇒

and

int T1_SetLineThickness(int FontID, int linetype, float value)F()⇒

set the respective value for font FontID to value. The linetype argument is assumed to be
an OR’ed combination of T1_UNDERLINE, T1_OVERLINE and T1_OVERSTRIKE. While it generally
does not make sense to specify identical positions for two or three distinct line rule types, it
is meaningful to specify identical thickness values for two or all rules types. However both
functions accept combinations of linetype specification. It follows that consistent line ruling for
several fonts can be achieved by setting the line rule parameters of the involved fonts to identical
respective values.

Currently active line rule parameters can be queried using the functions

float T1_GetLinePosition(int FontID, int linetype)F()⇒

and

float T1_GetLineThickness(int FontID, int linetype)F()⇒

In case more than one line rule type is specified for linetype the first matching value is returned,
since obviously the functions can only return one value. The order the argument is checked is
T1_UNDERLINE, T1_OVERLINE and finally T1_OVERSTRIKE.

These functions called with T1_UNDERLINE as line type argument should not be confused
with the functions T1_GetUnderlinePosition() and T1_GetUnderlineThickness() respec-
tively. The latter functions will always return the values from the Fontinfo dictionary as opposed
to the former which will return the currently active values.

Since line ruling is done on the fly, it is possible to change the involved parameters in the
middle of a session without confusing the cache or removing size dependent data.

5.10 Common Information on Fonts and Characters

This subsection describes some functions making common information available. This includes
Type 1 and AFM data. Thus, these functions partially depend on the existence of AFM data.
In order not to have to specify this data every time, here are a few conventions:

1. FontID is the valid ID of a declared font.

2. All functions that require a character index as argument use the currently active encoding
vector to determine the character’s name belonging to this index and use the character’s
name to search for the information required.

3. Some functions do not allow to use the return value for error checking. For this reason
every function described in this subsection will set T1_errno appropriately if something
goes wrong. See 5.19 for the description of the possible values of T1_errno.

4. None of the functions described in this subsection will load a font automatically.

44

5.10.1 Information from FontInfo-Dictionary

char *T1_GetFontName(int FontID)F()⇒

This function returns the string object FontName from the fontinfo-dictionary of the specified
font or a NULL pointer if the font is not loaded.

The memory for the returned string is static in this function and should thus not be freed
by the user. As another consequence, the returned string is only constant until the function is
called the next time.

char *T1_GetFullName(int FontID)F()⇒

This function returns the string object FullName from the fontinfo-dictionary of the specified
font or a NULL pointer if the font is not loaded.

The memory for the returned string is static in this function and should thus not be freed
by the user. As another consequence, the returned string is only constant until the function is
called the next time.

char *T1_GetFamilyName(int FontID)F()⇒

This function returns the string object FamilyName from the fontinfo-dictionary of the specified
font or a NULL pointer if the font is not loaded.

The memory for the returned string is static in this function and should thus not be freed
by the user. As another consequence, the returned string is only constant until the function is
called the next time.

char *T1_GetWeight(int FontID)F()⇒

It returns the Weight entry from fontinfo dictionary. It is a string entry and represents a
verbatim classification of the font rather than a numerical quantity. In case of an error NULL is
returned.

float T1_GetItalicAngle(int FontID)F()⇒

The returned value is the italic angle of the font in degrees as a float. Notice that the meaning
of ItalicAngle is related to the slanting of fonts, but not in the sense of t1lib (see 5.11). An
italic font may be artificially slanted and an artificially slanted font in the sense of t1lib may
have an italic angle of zero.

int T1_GetIsFixedPitch(int FontID)F()⇒

This function returns 0 if the font’s spacing is proportional and 1 if it is fixed.

BBox T1_GetFontBBox(int FontID)F()⇒

This function returns the bounding box of the font identified by FontID. It is the bounding box
that results if all characters of a font are overlayed with their reference point falling on the point
(0,0). All values are in charspace units. The members lly and urx represent the fonts overall
descent and ascent, respectively.

The font’s bounding box is part of the AFM information as well as member in the font’s
private dictionary. It turns out that the information from .afm- and .pfa/.pfb-file is not

45

consistent for some fonts. t1lib returns the information stored in the font-file itself, since I
assume it is more consistent to the font’s data.

float T1_GetUnderlinePosition(int FontID)F()⇒

This function returns the underline position of the specified font as given in the fontinfo-
dictionary. The value is to be interpreted in charspace units. If the font is not loaded, 0 is
returned since an underline position of 0 can be considered impossible for most fonts.

float T1_GetUnderlineThickness(int FontID)F()⇒

This function returns the thickness of the underlining rule for this font or 0 if the font is not
loaded. 0 is a safe index for an error since a rule of height 0 would not be visible anyhow.

char *T1_GetVersion(int FontID)F()⇒

The version string from the Type 1 font file is returned. The memory where the string is located
is managed by the function itself.

char *T1_GetNotice(int FontID)F()⇒

The notice string from the Type 1 font file is returned. Again the user should not touch the
memory where the string is located.

5.10.2 Metric Information on Glyphs

int T1_GetCharWidth(int FontID, char char1)F()⇒

The character width according to the AFM information is returned in charspace units. If no
AFM information is available, 0 is returned.

The width of a character is the amount of horizontal escapement that the next character
is shifted to the right with respect to the current position. This information is not given in
the character’s bounding box. Also, the width corresponds to the entry characterWidth in
the glyph-structure, as described in 5.5. But since T1_GetCharWidth(), returns its result in
charspace units, the accuracy is much higher than using the value of the glyph-structure which
has only pixel-accuracy.

If there is an extension specified for the font in question, the characters width is corrected
correspondingly.

BBox T1_GetCharBBox(int FontID, char char1)F()⇒

The character’s bounding box of char1 is returned with the elements to be interpreted in
charspace units. The bounding box of a character is defined to be smallest rectangle aligned
parallel to the x- and y-axis of the character coordinate system which encloses the painted area
of the character completely. This rectangle is completely specified by specifying its lower left
and its upper right corner. From a programmer’s point of view, a characters bounding box is
defined by the following struct of type BBox:

typedef struct
{

int llx; /* lower left x-position */
int lly; /* lower left y-position */

46

int urx; /* upper right x-position */
int ury; /* upper right y-position */

} BBox;

In case the character is not encoded or no AFM data is available, a box containing only zeros is
returned.

The bounding box is corrected if an extension value has been applied to the font in question.
Since version 0.3-beta, slanted fonts are fully supported, meaning that for slanted fonts too a

correct bounding box will be returned. This is however quite time expensive since the characters’
real outline must be considered. See the discussion on slanting a font (5.11) for an explanation
of this.

int T1_GetStringWidth(int FontID, char *string,
int len, long spaceoff, int kerning)F()⇒

BBox T1_GetStringBBox(int FontID, char *string,
int len, long spaceoff, int kerning)F()⇒

These two functions represent the complement to the above functions on the level of strings. All
parameters that take influence on the resulting width and bounding box must be given in the
argument list. Their meaning is identical to the meaning they have when calling string rastering
functions (see 5.5).

METRICSINFO T1_GetMetricsInfo(int FontID, char *string,
int len, long spaceoff, int kerning)F()⇒

In certain situations bounding box and width of a glyph are required both. In these cases it
is more convenient to call T1_GetMetricsInfo() which returns a structure that contains all
information. METRICSINFO is defined in t1lib.h as:

typedef struct
{

int width;
BBox bbox;
int numchars;
int *charpos;

} METRICSINFO;

All numbers are to be interpreted in character space units — they are directly taken from AFM
data. width is the glyph’s width and bbox its bounding box which in turn is a struct as defined
some paragraphs above.

numchars is assigned number of characters in string. If the argument len is different from
0, numchars is assigned that value.

charpos is a pointer to an integer array of size numchars allocated by T1_GetMetricsInfo().
During execution this array is filled step by step with the horizontal escapement in character
space units of the respective character relative to the start point of the string glyph which
corresponds to 0. charpos remains valid until T1_GetMetricsInfo() is called the next time.
The user should not free this memory because this is handled automatically.

The terms concerning the bounding box of slanted fonts mentioned under the description of
T1_GetCharBBox() apply here as well. The first and the last character of string have to be
observed spending high effort. But nevertheless the correct bounding box is returned.

47

int T1_GetKerning(int FontID, char char1, char char2)F()⇒

This function returns the amount of kerning for the specified character pair char1 and char2.
If an extension has been specified for the font (see 5.11), the amount of kerning is automatically
corrected using the extension factor. The value returned has to be interpreted in charspace
units.

If no AFM information is available for the font in question, simply 0 is returned. The same
applies if the font is not loaded.

The implementation of this function requires that the kerning pairs in the AFM file are
sorted in alphabetical order. I am not sure whether this condition is found in the specification
of the AFM file format. If this function doesn’t work although AFM kerning data is available,
this might be the reason.

int T1_QueryLigs(int FontID, char char1,
char **successors, char **ligatures)F()⇒

This function implements the interface to the ligature information in the AFM data. Ligatures
are special character-symbols which are substituted if special pairs, triples or whatever groups
of characters appear in a string. For example, “fi” is replaced with the ligature “fi”. In this
example, the “i” is called successor and the “fi” is the associated ligature.

char1 is the character which has to be checked for ligatures, i.e., the first character of a
possible ligature group. successors and ligatures should be addresses of pointers to chars.
These pointers are modified by the T1_QueryLigs().

First, T1_QueryLigs() checks how many ligatures are defined for the character given by
char1. Assuming this number is n, it then defines memory for two arrays of type char with
size n. These arrays are filled with the indices of the successor-characters and with the indices
of the associated ligatures, respectively. The current encoding vector is used for this. The
addresses of these two arrays are written to the addresses of the respective pointers successors
and ligatures. They are thus later available to the user in order to access the memory where
the successor-character and ligatures are specified. The value n is returned in order to tell the
user how many ligatures were found and to give the user information about the end of the two
arrays.

If the font is not loaded or AFM data is not available, -1 is returned.
Since this may seem to be a little complicated, here is a programming example:

char *succ, *lig;
int n_lig, i;
char char1=’f’;

/* Get ligature information of character ’f’ in font 0: */
n_lig=T1_QueryLig(0, char1, &suc, &lig);

/* print out indices of characters and their ligatures */
for (i=0; i<n_lig; i++;){

printf("First char: %d, + next char: %d --> ligatur: %d\n",
char1,
succ[i],
lig[i]);

Notice that the arrays where the successor indices and the respective ligature indices are

48

stored are static in T1_QueryLigs(). Thus, they may not be freed and moreover they are only
valid until the next time T1_QueryLigs() is called.

5.10.3 Character-Encoding Relation

char *T1_GetCharName(int FontID, char char1)F()⇒

This function returns the name of the character indexed by char1 according to the current
encoding vector. As said above, the memory where the string is stored is static to this function
so that the user should not free the returned pointer. If the font is not loaded, NULL is returned.

int T1_GetEncodingIndex(int FontID, char *char1)F()⇒

This function is the complement to the above function. It returns the lowest index of the
character with the specified name in the current encoding vector as an int. If the charactername
is not found in the current encoding vector or if the font is not loaded, the value -1 is returned.

int *T1_GetEncodingIndices(int FontID, char *char1)F()⇒

This function is an extension of the above function. It is meant for cases where all appearences
of char1 in the encoding vector are requested. The return value is an integer array whose
elements contain the encoding indices where char1 appears in increasing order. The first neg-
ative entry in this array indicates that no more valid indices will follow. In the most extreme
case we can think of (i.e., where the complete encoding vector is occupied by one character),
T1_GetEncodingIndices() will return an array of size 257 where the first 256 elements bear
their own index and the 257th element is −1. If font FontID is not loaded, this function returns
NULL and T1_errno will be set appropriately. If char1 was not found in the encoding vector, a
valid array is returned but the first element will be −1.

char **T1_GetAllCharNames(int FontID)F()⇒

As described in 5.7, not all characters of a font need to be encoded. A Type 1 may contain the
outlines of an arbitrary number of characters, but only 256 can be encoded—and thus accessed—
simultaneously. Since the characternames are inside the encrypted portion of the Type 1 font
file, there is no easy way to find out which characters a font defines.

t1lib provides T1_GetAllCharNames() for situations where a programmer needs to know
what characters are defined in the font file identified by FontID. The value returned is a pointer
to an array of char pointers which in turn point to the characternames. The array’s size is
(n + 1) where n is the number of defined outlines. The (n + 1)th pointer is NULL to indicate
the end of the array. An application programmer may use these characternames to construct
a specialized encoding vector. Here is an example of how to use T1_GetAllCharNames(). It
prints a list of all defined characternames in font 0.

char **ptr;
int i;
.
.
.
ptr=T1_GetAllCharNames(0);
i=0;
while (ptr[i]!=NULL){

49

printf("Charstring %d = %s\n", i, ptr[i]);
i++;

}

The memory for storing the pointers and the charactername strings is static in
T1_GetAllCharNames(). Thus it remains valid until the function is called the next time. The
user should not free this memory or if he does, he should set the pointer to NULL to indicate the
memory has already been freed.

int T1_GetNoKernPairs(int FontID)F()⇒

This function returns the number of kerning pairs defined for the font identified by FontID.
The number -1 is returned if an error occured and T1_errno will be set. All positive numbers
including 0 should be considered valid return values.

5.10.4 Administrative Information
int T1_GetNoFonts(void)F()⇒

Usually, this function returns the number of fonts declared in the font database file, i.e., the
integer quantity from the first line of the font database file. However, if some new fonts have
been created using T1_CopyFont() (see 5.15) or if some fonts have been added to the database
after initialization (see 5.3.3), these are also taken into account. The number returned by
T1_GetNoFonts() minus 1 is thus the largest valid font ID specification.

int T1_CheckForInit(void)F()⇒

Use this function in order to check whether t1lib is initialized. It returns 0 if initialization has
already happened and −1 otherwise.

int T1_CheckForFontID(int FontID)F()⇒

This functions gives information on the load status of the font associated to FontID. It returns
0 if the font FontID has not yet been loaded, 1 if it has already been loaded. Finally, a return
value of −1 indicates that either FontID is an invalid specification or t1lib is not initialized.

char *T1_GetFontFileName(int FontID)F()⇒

This function returns a pointer to the fontfilename identified by FontID. In no case, this pointer
may be freed since the memory is static to this function. The string also is only valid up to the
next call of this function.

char *T1_GetFontFilePath(int FontID)F()⇒

This function returns a pointer to the fully qualified path of the font file identified by FontID.
In no case, this pointer may be freed since the memory is static to this function. The string also
is only valid up to the next call of this function.

char *T1_GetAFMFilePath(int FontID)F()⇒

This function returns a pointer to the fully qualified path of the AFM file of the font identified
by FontID, as used by t1lib. In case of an error NULL is returned. It may also happen that

50

there exists no AFM file for the font either because AFM information was generated on the fly
at the time the font was loaded, or because AFM processing had been disabled at initialization
time. For those cases T1_errno is not set.

In no case, the returned pointer may be freed since the memory is static to this function.
The string also is only valid up to the next call of this function.

char *T1_GetLibIdent(void)F()⇒

This function returns the identifier string for the version of t1lib. For example, this could be
0.8-beta. The string is static in this function and should thus not be freed by the user.

5.11 Transformation of Fonts

Transformation of Type 1 fonts is generally accomplished by means of concatenating so-called
transformation matrices. For example, rotation is equivalent to concatenation of the stan-
dard transformation matrix with a special matrix whose elements are trigonometric functions
evaluated at the rotation angle. In the sense of t1lib, we distinguish between fontlevel trans-
formations and characterlevel transformations.

5.11.1 Fontlevel Transformations

t1lib supports three transformations that operate globally on a font’s data. After applying
such a transformation to a font all characters generated from then on will be rendered according
to that transformation. Moreover, these transformed characters are saved in cache for fast
future access. This principle is thus meant for transformed fonts which are semantically used
as ordinary text fonts. Creating a font Times-Oblique by slanting a Times-Roman would be a
typical example.

The first fontlevel transformation is called “extension” since it extents a font horizontally—
makes its characters wider. A font is extended by a call to the function

int T1_ExtendFont(int FontID, double extend)F()⇒

A font that is to be extended may not have size dependent data. If size dependent data exists,
it must explicitly be removed before applying an extension-factor. This is simply a security
mechanism which prevents the user from mixing up extended and non-extended bitmaps. If the
font is not loaded or size-dependent data is existent, -1 is returned. Otherwise, the function
returns 0.

All information on character metrics is automatically adapted to an extension-factor different
from 1 (see 5.10).

Applying an extension-factor to a font is implemented by replacing the current extension-
factor—initially 1—with the supplied value. Thus, an extension can be deleted by specifying a
factor 1. Moreover, extending a font two times, say, with factor 2, does not yield a font extended
by 4. Rather the last specified extension, here 2, is applied.

The second type of fontlevel transformation supported by t1lib is slanting. It is done by a
call to the function

int T1_SlantFont(int FontID, double slant)F()⇒

The slant-factor s tells the rastering algorithm to advance the x-coordinate of a given point by
the product of s with the y-coordinate of that point. Such fonts are sometimes called oblique.

51

Another interpretation is that we state: s = tan(α), where α is the well-known italic-angle of
the font.

Just as above, no size-dependent data may be existent and the font must be loaded. In that
case 0 is returned, otherwise -1.

As above, the slanting operation is implemented by setting the slant-factor so that a slant
may be reset by means of specifying a slant-factor of 0.

There is one thing that makes handling of slanted fonts more difficult than handling of
extended fonts. When typesetting strings by concatenating bitmaps, exact information on char-
acter metrics is necessary. By slanting a character the character’s width is not affected. But the
bounding box is. And while extension—which means strictly horizontal scaling independent of
the respective y-coordinate—simply leads to an extension of the bounding box, there is no way
to compute the bounding box of a slanted character from the bounding box of the respective
unslanted character. Here is an example.

• Let the character be \. When slanting this character with a value of 1, the resulting char-
acter will be similar to a vertical line. The bounding box will thus be small in horizontal
direction.

• If character is /, the resulting slanted character will tend to be more horizontal. Thus the
resulting bounding box will be much extended in horizontal direction.

In conclusion we can say that the effect of slanting on the bounding box of a given character
depends on the shape of the character itself.

Since version 0.3-beta the problem with the bounding box of slanted characters is handled
as follows. The character in question is internally rastered at 1000 bp and the bounding box
of the resulting “edgelist” is examined. But no bitmap is generated for the character, this
limits the computational effort. However the difference in time performance between getting a
bounding box from a “simple-shaped” slanted character like “i” and getting a bounding box of
a “complex-shaped” character like “Q” is clearly noticeable.

The positioning algorithm for string bitmaps has been slightly improved in t1lib V. 0.3-beta
so that now exclusively bitmap metrics are used where the bounding boxes are needed. The
limitation of slanted fonts appears thus only if a user explicitly requests a bounding box of a
character/string in an artificially slanted font.

The third and most common type of fontlevel transformation allows arbitrary linear trans-
formations. This is done by a call to the function

int T1_TransformFont(int FontID, T1_TMATRIX *matrix)F()⇒

The transformation is specified by matrix (as described below). This function acts by setting
the font’s transformation matrix to the matrix pointed to by matrix.

As a final consequence of what has been described so far in this section it turns out that
T1_TransformFont() overrides whatever slant and extension values might have been set be-
fore. Conversely, if T1_SlantFont() or T1_ExtendFont() are applied to a font after a call to
T1_TransformFont(), the respective values are simply overridden, there will be no concate-
nation. In the following description of transformation matrices and their usage, we will also
describe how to concatenate an arbitrary series of linear transformations.

There are also functions for querying the current values of the quantities described above for
fontlevel transformations.

double T1_GetExtend(int FontID)F()⇒

and

52

double T1_GetSlant(int FontID)F()⇒

return the current extension and slant values. The function

T1_TMATRIX T1_GetTransform(int FontID)F()⇒

Returns the current transformation matrix as a structure of type T1_TMATRIX which will be
described in detail in the next subsubsection.

5.11.2 Transformation at Rastering Time

This kind of transformation is the most generic one and allows arbitrary transformations. A
transformation (x′, y′)T of a given location (x, y)T is given by the following set of linear equations:

x′ = a11x+ a21y

y′ = a12x+ a22y

Here, the matrix

A =

(
a11 a21

a12 a22

)
is referred to as the transformation matrix. In t1lib the following type definition is used for
such transformation matrices:

typedef struct
{

double cxx; /* corresponds to a11 */
double cyx; /* corresponds to a21 */
double cxy; /* corresponds to a12 */
double cyy; /* corresponds to a22 */

} T1_TMATRIX;

Each of the rastering functions expects to get a pointer to an object of type T1_MATRIX, or NULL
if no transformation is to be applied. If any transformation has been specified, the resulting
glyph is never kept in cache memory. Thus, if for some reason caching should be disabled
for non-transformed characters, simply a pointer to the unity matrix could be specified to the
rastering function to achieve this.

The user has the possibility of either allocating and creating the transformation matrices by
himself or to use predefined functions of t1lib. There are 8 different functions for generating
transformed characters. Figure 1 gives an example of each function using the character “g”.

Before describing each particular function we should discuss the first argument because this
is common to all matrix transformation functions. This first argument, in case it is not NULL,
is expected to be a pointer to an already existent valid T1_TMATRIX object. The transformation
to be applied is then done by multiplying the existent matrix with the new matrix. In other
words, the existent matrix is replaced by the concatenation of the two matrices. If a NULL
is specified as argument, the new matrix is allocated by the respective function and then set
to the concatenation of the unity matrix with the desired transformation. Thus, to remove
a matrix from memory, the pointer simply has to be given to free(), no matter how many
transformations have been applied to this matrix before.

We should now describe the functions for generating transformation matrices:

53

g g g
T1_MirrorHMatrix() T1_MirrorVMatrix() T1_ShearHMatrix()

g g g
T1_ShearVMatrix() T1_ExtendHMatrix() T1_ExtendVMatrix()

g g
T1_RotateMatrix() T1_TransformMatrix()

Figure 1: Typical examples for the predefined functions for generating transformation matrices
in t1lib, applied to the character “g”.

T1_TMATRIX *T1_MirrorHMatrix(T1_TMATRIX *matrix)F()⇒

and

T1_TMATRIX *T1_MirrorVMatrix(T1_TMATRIX *matrix)F()⇒

simply change the sign of the matrix coefficients a11 and a22 respectively. This has the optical
effect of mirroring the character at the horizontal line y = 0 or at the vertical line x = 0,
respectively. These functions represent a specialized form of

T1_TMATRIX *T1_ExtendHMatrix(T1_TMATRIX *matrix, float extent)F()⇒

and

54

T1_TMATRIX *T1_ExtendVMatrix(T1_TMATRIX *matrix, float extent)F()⇒

These functions allow arbitrary scaling in the respective coordinate direction. Specifying
extent=-1 exactly yields mirroring at the corresponding axis.

Furthermore, there are two transformations where one coordinate depends on itself and on
the other coordinate. This is called shearing, slanting or also obliqueing. It is possible in both
directions using the functions

T1_TMATRIX *T1_ShearHMatrix(T1_TMATRIX *matrix, float shear)F()⇒

and

T1_TMATRIX *T1_ShearVMatrix(T1_TMATRIX *matrix, float shear)F()⇒

In case of horizontal shearing, the factor shear is equal to tan(α), where α may be interpreted as
the italic angle. It is measured from the positive vertical axis in mathematical negative direction.
Correspondingly, for vertical shearing shear equals tan(β), where β is the angle measured from
the horizontal axis in mathematically positive direction.

Rotation of glyphs is achieved using

T1_TMATRIX *T1_RotateMatrix(T1_TMATRIX *matrix, float angle)F()⇒

This function evaluates the trigonometric functions at the value of angle and concatenates the
transformation matrix with (

cos(α) − sin(α)
sin(α) cos(α)

)
α is expected to be specified in degrees. It is measured according standard mathematical con-
ventions.

There is one more function which allows to set all matrix coefficients explicitly. It gives thus
complete control over the transformation. This might be necessary to typeset text in a circle,
for example. The syntax of this function is

T1_TMATRIX *T1_TransformMatrix(T1_TMATRIX *matrix,
float cxx, float cyx,
float cxy, float cyy)F()⇒

5.11.3 t1lib and PostScript: Notes on Transformation Matrices

In order to avoid confusion about transformation matrices, we should briefly discuss the dif-
ferences between t1lib- and PostScript transformation matrices. In t1lib-nomenclature a
coordinate description is assumed to be represented by a column vector (x, y)T . In contrast,
PostScript assumes a coordinate to be represented by a row vector (x, y). This leads to an ex-
changed meaning of the second and third matrix element between t1lib and PostScript. From
the mathematical point of view this is caused by matrix transposition. To make this clear, let
me quote the matrix

APostScript =

 a b 0
c d 0
tx ty 1



55

from the PostScript Language Reference Manual (Adobe, Red Book). If we forget about trans-
lation which in this sense is not implemented by t1lib, we only have to consider the top left
submatrix consisting of a, b, c and d. The t1lib-equivalent to this matrix would be written as

At1lib =

(
a c
b d

)

I.e., the meaning of b and c is exchanged. Notice that font matrices as found in Type 1 font
files have to be interpreted according to the PostScript notation. But a user should never come
close to something other than the t1lib transformation matrices

5.12 Stroking of Character Outlines

Most available Type 1 fonts internally specify the numeric value PaintType as 0. This indicates
that the mathematical outline definitions of the characters consist of paths that represent the left
and right—or inner and outer—borders of the character area to be filled with ink. In particular,
this means that every subpath of a character definition must be closed. When filling characters,
the curves that describe the outline are infinitely thin and the area between paths is of interest.

By contrast, there are fonts that specify PaintType as 1. These are also known as stroked
fonts. Basically, their characters’ shapes are generated by travelling along the mathematically
thin defining curves using a pen with some finite width. The penwidth used here usually is
specified in the font itself by means of the quantity StrokeWidth.

Using a somewhat unusual implementation, t1lib can

• image stroked fonts with PaintType 1,

• stroke fonts that have PaintType 0,

• deal with variable strokewidths for both paint types.

In particular at low resolutions and when using large penwidths, the results of stroking may fall
short of the quality of other general graphics tools like e.g. native PostScript interpreters. Also
hinting generally is disabled when creating stroked character outlines. For the interested reader,
the implementation of stroking is outlined in 8 (page 94).

The process of stroking in t1lib is treated similar to the process of transformation. There-
fore, firstly, a font can be generally switched to be a stroked font. This is achieved using

int T1_StrokeFont(int FontID, int dostroke)F()⇒

Here, FontID identifies the font to be switched. The parameter dostroke determines the future
rastering behavior. If it equals 0, the font’s characters will be filled and for any other value the
characters will be stroked. The function returns 0 in case of success. T1_StrokeFont() requires
the font FontID to be loaded. If the font is not loaded T1_errno will be set appropriately and
the function returns -1. After switching a font to stroked, its characters are cached as usual.
It is therefore important that, at the time where T1_StrokeFont() is called, no size-dependent
data does exist. If this condition is violated, the function will fail too and set T1_errno to
T1ERR_OP_NOT_PERMITTED.

The second method to control the rasterizer mode for the font FontID is to use the function
pair

int T1_SetStrokeFlag(int FontID)F()⇒

and

56

int T1_ClearStrokeFlag(int FontID)F()⇒

for enabling and disabling stroking, respectively. These two functions return 0 on successful
completion and -1 in case of a failure. They can only fail if FontID is not valid, in which
case T1_errno is set to T1ERR_INVALID_FONTID. Using these functions, switching the stroking
is hence possible at any time. The netto effect is that caching will be disabled if the actually
selected rasterizer mode does not match the one of the cached characters. The performance
then will degrade for the rasterizer mode that is not the base mode of the font in question.

If stroked characters and filled characters are required for one particular font while preserving
good performance, using logical fonts is the tool of choice (see Sec. 5.15, page 70).

The currently active rasterizer mode for the font FontID can also be queried. This is done
using

int T1_GetStrokeMode(int FontID)F()⇒

If FontID is not valid, −1 is returned and T1_errno is set to T1ERR_INVALID_FONTID. In any
other case, the following values may be returned:

• 0: The rasterizer mode is Fill and filled characters are cached. For stroked fonts with
a PaintType of 1, of course, the characters are stroked and these stroked characters are
cached anyhow.

• 1: Stroking is enabled, while filled characters are cached. Each rasterization request is
performed on the fly, as for nontrivial transformations.

• 2: Filling is enabled but stroked characters are cached. Rasterization again is performed
on the fly.

• 3: Stroking is enabled and stroked characters are cached.

The width of the virtual pen used to trace the character outlines can also be adjusted. The
function

int T1_SetStrokeWidth(int FontID, float strokewidth)F()⇒

sets up strokewidth as the pen width used to stroke characters from font FontID. It is in-
terpreted in charspace units and hence directly comparable to the StrokeWidth parameter of
stroked fonts. If this function succeeds, 0 is returned. The function call might also be un-
successful, in which case −1 is returned. The value of T1_errno then gives a hint to the
reason of the failure. If set to T1ERR_INVALID_FONTID, the font was not loaded. The value
T1ERR_INVALID_PARAMETER indicates that a negative strokewidths has been specified. Finally,
T1ERR_OP_NOT_PERMITTED may appear if stroked characters are cached for the font in question,
size dependent data exists, and the requested strokewidth did not equal the one used at the time
where the cache data initially has been built. Allowing to setup an arbitrary strokewidth under
the latter circumstances might fillup the cache for one font with characters rasterized using
inconsistent strokewidths, which has to be avoided. From this discussion it becomes suggesting
not to cache stroked character at all, if stroking should be done using variable strokewidths.

The pen width for a given font FontID may be queried at any time using

float T1_GetStrokeWidth(int FontID)F()⇒

57

If the value 0.0 is returned, this either indicates that the characters are filled or that the font in
question is not loaded. Then, T1_errno is also set to T1ERR_INVALID_FONTID.

5.13 Antialiasing

5.13.1 General Description

When fonts are displayed on screen at low sizes, the shapes of characters often get damaged
because of rounding errors—a pixel can generally present two states: painted or non-painted.
But the human eye can be fooled in a way that it “thinks” sub-pixel accuracy is given on the
screen. This is done by considering which pixels are filled with ink to what degree and giving the
physical pixel an appropriate shade of gray. For example, a pixel whose area would be covered
50% would get a 50% gray shade. This technique is called antialiasing.

There are several ways to implement antialiasing. t1lib implements antialiasing by in-
ternally generating a bitmap larger than needed and then subsampling. Depending on the
subsampling factor which may be 2 or 4, this principle yields glyphs with 5 or 17 shades of gray
including black and white.

There are three functions for generating antialiased glyphs:

GLYPH *T1_AASetChar(int FontID, char charcode,
float size, T1_TMATRIX *transform)F()⇒

GLYPH *T1_AASetString(int FontID, char *string, int len,
long spaceoff, int modflag,
float size, T1_TMATRIX *transform)F()⇒

GLYPH* T1_AASetRect(int FontID, float size,
float width, float height,
T1_TMATRIX *transform)F()⇒

Note the “AA” in the functions names which stand for AntiAliasing. The usage is identical to
the usage of the functions T1_SetChar(), T1_SetString() and T1_SetRect(). So see 5.5 for
an explanation of the arguments and their interpretation.

When an antialiased glyph is requested, the supplied size-value is multiplied by the current
subsampling factor. For now, let us assume it is 2. Then the respective function for generating
non-antialiased glyphs is called with all other arguments unchanged. The result is a bitmap
twice as high and twice as wide as the user requested. Now, a 2 × 2 mask is moved over this
bitmap and the number of painted pixels in this mask is considered at each place. According
to the number of painted pixels one of 5 different gray shades is assigned to the resulting pixel.
Since the mask is moved with an increment of 2 pixels in horizontal and vertical direction, the
bitmap is at the same time subsampled by 2. Thus, the resulting bitmap is just of the size the
user requested and its pixels each contain one of 5 gray shades.

Conceptually, the same applies for subsampling with 4. In this case the mask is of size 4× 4
and there will be 17 distinct gray shades including black and white. The computational effort
is considerably larger so that 4 × subsampling should only be used for very small sizes.

When moving the mask over double-sized bitmap it is aligned properly with respect to the
characters’ baseline (zero height) rather than with the characters’ top or bottom line. This
principle ensures, that the most important visual guideline in running text, the baseline, is
represented in a consistent manor. This is especially important if one is using a serif-font.

58

Thanks to Raph Levien, the algorithm described above in a verbose manor has been replaced
by a much faster lookup-algorithm in t1lib V. 0.4-beta.

5.13.2 Setting Operating Parameters

Applications can use both 2× and 4× antialiasing arbitrary mixed. Switching between the two
modes is achieved using

int T1_AASetLevel(int level)F()⇒

The argument level should be either T1_AA_LOW (= 2) or T1_AA_HIGH (= 4). Any other values
are ignored and T1_errno is set appropriately. This function is to be called after initialization.
The default value after initialization is T1_AA_LOW. The current value can also be queried by
issuing a call to

int T1_AAGetLevel(void)F()⇒

The returned value is current level. Switching between the two antialiasing modes should be
quite fast since apart from a little error checking essentially only one simple variable is set.

There is one more value that may be specified for level, namely T1_AA_NONE. T1_AA_NONE
is identical to 1 which means that no subsampling at all is done. But the resulting glyph,
having only fore- and background colors is returned as a bytemap instead of as a bitmap. This
is intended for situtations where an antialiased glyph should be concatenated with a (possibly
large) non-antialiased glyph using the function T1_ConcatGlyphs(). In that case, the depths of
the two glyphs have to be identical. There is probably not much more sense in setting level to
T1_AA_NONE.

As described before, the result of the T1_AASet..() functions is strictly spoken no longer a
bitmap since more than one bit is used to represent one pixel. The function

int T1_AASetBitsPerPixel(int bpp)F()⇒

allows the user to specify how many bits should be used to represent one pixel. Allowed values
for bpp are 8, 16, 24 and 32. However, if 24 is specified, internally 32 will be used since the pixel
are then addressed as objects of type long. Antialiased glyphs may grow quite large, especially
when using bpp = 32. The value of bpp is written into the member bpp of the glyph-structure
(see 5.5 on page 32). That way a user can check whether a glyph is antialiased or not. It is
possible to work with antialiased and non-antialiased glyphs at the same time. It is also possible
to directly query the value of bits per pixel by using

int T1_AAGetBitsPerPixel(void)F()⇒

The value returned is the number of bits per pixel used.
In order to make the handling of antialiased glyphs as flexible as possible, the values to be

written into the pixels for different gray values may (and must) be explicitly specified. For low
level antialiasing this is done by calling the function

59

int T1_AASetGrayValues(unsigned long white,
unsigned long gray75,
unsigned long gray50,
unsigned long gray25,
unsigned long black)F()⇒

For lower bpp values only the lower bits are used. For high level antialiasing this kind of graylevel
specification is not economical since 17 arguments would have to be specified. Instead, another
function is used which expects a pointer an array of unsigned long’s:

int T1_AAHSetGrayValues(unsigned long *grayvals)F()⇒

The array grayvals points to must contain 17 entries. Element 0 is expected to specify the
background color’s pixel value and element 16 represents the foreground color. Calling one of
these two functions involves also a new setup of the lookup tables. It should thus only be done
if some color value really has changed.

In case the antialiasing level is set to T1_AA_NONE as described above, the function

int T1_AANSetGrayValues(unsigned long bg, unsigned long fg)F()⇒

must be used to set foreground and background color. In conclusion, it turns out that each an-
tialiasing level has its own lookup tables which have to be initialized as soon as either foreground
color, background color or both have changed.

Each of the three graylevel sets described above can also be queried by the user. This is
done using one of the functions

int T1_AAGetGrayValues(long *pgrayvals)F()⇒

int T1_AAHGetGrayValues(long *pgrayvals)F()⇒

int T1_AANGetGrayValues(long *pgrayvals)F()⇒

Here, pgrayvals is the start address of an array of long-values to which the respective gray-
values are written. This memory must thus be supplied by the user. These functions will write
5 (T1_AAGetGrayValues), 17 (T1_AAHGetGrayValues) and 2 (T1_AANGetGrayValues) respec-
tively to the location given by pgrayvals. These functions are to be called after initialization.
If something goes wrong -1 is returned and T1_errno will be set accordingly. Otherwise 0 is
returned.

5.13.3 Smart Antialiasing

Antialiasing improves legibility for small sizes but is not that much useful for large sizes. To make
a compromise between computation time, system resources and optical appearance it might be
advantageous to use T1_AA_HIGH for small sizes, T1_AA_LOW for medium sizes and T1_AA_NONE
for large sizes. Of course, for large sizes the non-antialiasing functions could be used which still
need less resources.

In order to free the user from having to switch the antialiasing level explicitly, t1lib can be
told to do this switching automatically, depending on the size requested. This is called Smart

60

Figure 2: The string “Tee” (which is the German word for “tea”) rastered at 13 bp, using 4×
antialiasing. Notice the different representations of the character “e”.

Antialiasing. It is disabled by default and can be toggled by a call to

int T1_AASetSmartMode(int smart)F()⇒

The quantity smart should be either be T1_YES (which corresponds to 1) or T1_NO (which
corresponds to 0. Notice that the current antialiasing level as set by T1_AASetLevel() is not
affected by this. After having switched off smart antialiasing the former antialiasing level is
restored. When smart antialiasing is active still has to take care for setting the lookup tables
after a color change has happened.

The numerical limits of the requested size at which t1lib will switch between the different
antialiasing levels may be specified using

int T1_AASetSmartLimits(float limit1, float limit2)F()⇒

Here, limit1 is the value of size at which t1lib switches from T1_AA_HIGH to T1_AA_LOW
and limit2 is the value of size at which t1lib switches from T1_AA_LOW to T1_AA_NONE. The
default values are 20.0 for limit1 and 60.0 for limit2. This means for sizes smaller than 20.0
T1_AA_HIGH will be used and for sizes equal to or greater than 60.0 T1_AA_NONE will be used.
The intermediate range is covered by T1_AA_LOW. These values are suitable for applications that
display on screen when the device resolution has been left at the default value of 72 dpi.

5.13.4 Caching of Antialiased Character Glyphs

Generally, antialiased glyphs are not cached in t1lib because this involves several problems
which are hardly to solve. One main problem is shown in figure 2. Obviously the character
“e” appears twice in different representations. This is intentional and is referred to as sub pixel
positioning. In the left “e” the letter is perceived somewhat more to the left with respect to the
pixels that represent the character. Conversely, the second “e” seems to lie somewhat more to
the right within the pixels. The advantage of this technique is that characters can be shifted by

61

some fractional amount of a pixel at low sizes.11 On the other hand the problem is introduced
that each character can have more than one representation in graylevels, depending on how
much subpixel shift is needed.

One further problem caused by subsampling is that certain information is irreversibly lost
in the graylevel representation. For example, if you have a graylevel pixel of intensity 50%
(whatever the real color is), then, in case of 2× antialiasing, you will know that in the 2 × 2
input bitmap two pixels had been set to foreground, but you would not know which two these had
been. But this information is important for concatenating and blitting of antialiased bitmaps:
it may well happen that two pixels with 50% gray that lie over each other had to produce an
output pixel of 50%, 75% or 100% gray (where 100% gray means full foreground intensity).

To avoid these problems, t1lib generally does not cache antialiased glyphs. Instead, it
works on true bitmaps which are then subsampled at the last possible stage to an antialiased
glyph. Applications that do not use anything more than the functions that yield char bitmaps
or bytemaps, could profit from caching of antialiased characters. Such applications could specify
T1_AA_CACHING as an additional ingredient to the log argument of the function T1_InitLib()
which initializes t1lib. This is done by OR’ing the value of log with T1_AA_CACHING as de-
scribed in 5.3. If this flag had been specified at initialization time, T1_AASetChar() will cache
the bytemaps it has generated and will take them from cache in future requests.

When caching antialiased glyphs, each size gets up to four distinct cache areas, one for
bitmaps and one for 1×, 2× and 4× subsampled bytemaps each. As soon as a string-generating
function is called these cached antialiased glyphs cannot be used for the reasons discussed before.
The developer of an application should thus carefully think about whether a possibly marginal
performance gain is really worth this much higher effort. If in doubt, simply check it out.
Applications like xdvi which place isolated character glyphs on a sheet could use this feature,
however, and profit from it.

5.14 Interface to Outlines

Although t1lib is meant for generating bitmaps from Type 1 outline fonts, there is a set
of functions for accessing outline data. There are several reasons for this. Firstly, outline
descriptions are, within the given arithmetic constraints, mathematically exact. Secondly and
related to the previous point, in certain cases where exact subpixel positioning is needed, the
functionality of grid-fitting before rasterization is needed. This can only be done accurately
based on outlines. To illustrate this, consider figure 3. When looking at the concatenated glyph
a), it appears that the underline rule has a small step where the two words touch.12 The reason
is, that the second part of the glyph had been rastered with respect to a pixel coordinate of
exactly (0, 0). Since the start of the second word in the resulting glyph does not exactly fall on
an integer pixel location, bitmap blitting causes an artifact in the visual line of the underlining
rule. Strings rotated at angles that are not multiples of 90◦ are prone to produce such effects. In
contrast the concatenated glyph b) does not show such effects because both partial glyphs are
placed mathematically exact and then filled. Thirdly, if the outline of a character is available,
it can be used for whatever. For example, the outline can be filled by another rasterizer, it can
by altered, it can be stroked and so on. t1lib makes outlines as they are internally used by the
rasterizer available. We will discuss how to interprete and access outlines in the remainder of
this section.

11The opinions whether this and antialiasing in general is of advantage for readability vary, so please consider
this the opinion of the author.

12Depending on the resolution and quality of the hardcopy you are reading, the effect might be hardly or not
all noticeable.

62

a) b)

Figure 3: Two concatenated bitmaps, a) concatenation done based on bitmaps by blitting and
b) based on outlines and then filled.

���

���

���

���

���

��	 ��

���

���

����

����� �����

Figure 4: The outline of a fictive character.

5.14.1 Outline Format

Before going into implementation details the general structure of a Type 1 outline is described.
We will consider the simple fictive character whose outline is shown in figure 4. We assume that
scaling, grid fitting and hinting has already been carried out. Then, the outline is given by set
of points Pi and segments connecting those points. There are:

• Move-segments (type = T1_PATHTYPE_MOVE): These are straight segments which cause the
current position to be displaced by some offset. Since the starting point of a segment is
always implicitly the current point, only one argument is needed, Pdest, the destination
point. In the figure, P1–P2 and P2–P12 are Move-segments. In this simple case they
displace from the characters origin to some starting point of the outline and from the
ending point of the outline to the point where the next character would have to be placed
(the horizontal escapement).

• Line-segments (type = T1_PATHTYPE_LINE): These are part of the path to be filled later.
In analogy to the Move-segment, one argument, Pdest, is required for Line-segments. In
the figure, P11–P2 is a Line-segment.

63

• Bezier-segments (type = T1_PATHTYPE_BEZIER): These are curve segments. Their shape
is defined by a starting point (always the current point here), an ending point Pdest and
two control points PB, PC . These four points are the parameters of what is called a third
order Bezier spline.13 The resulting curve has the following properties:

– It starts at the first point Pcurrent.

– It ends at the fourth point Pdest.

– The line that goes through the points Pcurrent and PB is the tangent to the curve
from the right side at the starting point Pcurrent.

– In analogy, the line that goes through the points PC and Pdest is the tangent to the
curve from the left side at the ending point Pdest.

– The resulting curve will be enclosed completely by the convex area that is defined by
connecting the definition points with straight line segments.

Our fictive character outline in figure 4 has three Bezier-segments, P2–P3–P4–P5, P5–P6–
P7–P8 and P8–P9–P10–P11. Notice that it is easily possible to achieve a smooth tangent
transition from one curve-segment to the next by choosing the involved points from a
straight line.

For Type 1 fonts in general, the following rules for interpreting coordinate specifications hold:

• All point specifications are relative to the current point.

• For Bezier-segments, PB, PC and Pdest all are relative to Pcurrent.

• Initially, i.e. when a character outline is started, the current point is at the origin (0, 0) of
the character.

Additionally, for this special rasterizer implementation, the following terms apply:

• The vertical coordinate is—in contrast to PostScript—inverted, i.e., the y-axis points down.

• Once hinted and gridfitted, the outline point coordinates are described in fractional pixels.
A “fractpel” is of type long and describes the location in 216th fractions of a pixel. To
convert from pixel to fractional pixel and vice versa, the macros T1_TOPATHPOINT(p) and
T1_NEARESTPOINT(fp) are provided.

Before describing the functions for retrieving outlines the format in which outlines are pre-
sented in C will be described. A point specification is done in the following structure:

typedef struct {
T1_int32 x;
T1_int32 y;

} T1_PATHPOINT;

x and y are fractional pixels as described above.
An outline is represented by a linked list of structures which describe path segments of the

type described above. Line- and Move-segments are described by the following structure:
13The mathematical defining equation represents a special case of a Bernstein polynom which was exploited

by Bezier in the context of solid modeling. The curve especially has the property that it may be approximated
efficiently by straight line segments in a few iterations.

64

typedef struct pathsegment {
char type;
unsigned char flag;
short references;
unsigned char size;
unsigned char context;
struct pathsegment *link;
struct pathsegment *last;
T1_PATHPOINT dest;

} T1_PATHSEGMENT;

type is either T1_PATHTYPE_MOVE or T1_PATHTYPE_LINE. flag, references, size and context
are internally used by the rasterizer. link is a pointer to the next segment structure or NULL in
case it is the last structure in the list. Finally, the last-entry is a pointer to the last structure
in the linked list. last is only set in the first segment and is reset to NULL in the remaining
segment structures. A Bezier-segment is described by the following structure:

typedef struct bezierpathsegment {
char type;
unsigned char flag;
short references;
unsigned char size;
unsigned char context;
T1_PATHSEGMENT *link;
T1_PATHSEGMENT *last;
T1_PATHPOINT dest;
T1_PATHPOINT B;
T1_PATHPOINT C;

} T1_BEZIERSEGMENT;

Obviously, the format is identical to that for straight path segments, extended by the entries B
and C which specify the control points as described earlier in this subsection. The common return
type for the outline retrieving functions is a pointer to T1_OUTLINE, which is in fact identical
to T1_PATHSEGMENT. This purely for convention. Although it is quite unlikely, an outline might
start with a Bezier-segment. To access Bezier-segment elements, a cast must be used.

5.14.2 Using Outlines

t1lib provides three functions for retrieving outlines. The first is

T1_OUTLINE *T1_GetCharOutline(int FontID, char charcode,
float size, T1_TMATRIX *transform)F()⇒

The meaning of the arguments is as in the T1_SetChar()-function. Notice that the size spec-
ification is also required here. Outlines are, by their nature in Type 1, generally defined in a
1000 × 1000 grid and then scaled down by the fontmatrix to 1 bp. The space is known as the
charspace. The reason for specifying a size at this place, instead of scaling the outline later, is,
that hinting is performed according to the scaled outline. The returned outline is then hinted
for the given size. If necessary, it may still be scaled later.

The outline for a complete string can be retrieved by

65

T1_OUTLINE *T1_GetStringOutline(int FontID, char *string, int len,
long spaceoff, int modflag,
float size, T1_TMATRIX *transform)F()⇒

The meaning of the arguments is as in T1_SetString().
Finally the “outline” for a displacement is available by the function

T1_OUTLINE *T1_GetMoveOutline(int FontID, int deltax, int deltay, int modflag,
float size, T1_TMATRIX *transform)F()⇒

This function is intended to be used for concatenation of outlines. It needs all the arguments be-
cause some quantities which are given on the font level are required for constructing the outline.
deltax and deltay are the horizontal and vertical displacement measured in charspace units.
From the modflag-argument, especially the underlining parameters are evaluated. Although x-
and y-displacement may be specified, the resulting outline is still subject to scaling with size
and transformation according to transform.

Arbitrary outlines may be concatenated by using the function

T1_OUTLINE *T1_ConcatOutlines(T1_OUTLINE *path1,
T1_OUTLINE *path2)F()⇒

Notice that this concatenation is done with high precision so that we can expect that visual
artefacts are reduced to a minimum (remember figure 3).

Scaling of outlines is done by the function

T1_OUTLINE *T1_ScaleOutline(T1_OUTLINE *path, float scale)F()⇒

T1_ScaleOutline does nothing more than linearly scaling the coordinate data with scale and
storing the result in fractional pixels. No care is taken for hinting (see above).

An outline may be duplicated using the function

T1_OUTLINE *T1_CopyOutline(T1_OUTLINE *path)F()⇒

This is a direct entrypoint into the rasterizer. It works by allocating and duplicating each
segment of path. This function may be useful if one wants to do several things with one outline
because the process of filling an outline also consumes that outline.

An outline that that a user decides not to fill can be destroyed by the function

void T1_FreeOutline(T1_OUTLINE *path)F()⇒

It iterates through the segment list and frees each segment. This must not be done after filling
an outline because the filling process consumes the outline!

Finally, there are two functions that produce glyphs from outlines, namely

GLYPH *T1_FillOutline(T1_OUTLINE *path, int modflag)F()⇒

and

66

Figure 5: A string with nonlinearly scaled coordinates.

GLYPH *T1_AAFillOutline(T1_OUTLINE *path, int modflag)F()⇒

Their usage does not need any explanation. The value of modflag is required for Right-To-
Left typesetting. If the bit T1_RIGHT_TO_LEFT is set, the dimension of the glyph are recomputed
accordingly. All other bits from modflag are ignored such that in the usual case of Left-To-Right
typesetting simply 0 can be specified. While T1_FillOutline() produces bitmaps of depth 1,
T1_AAFillOutline() produces antialiased bytemaps of the current graphics depth. It should
be mentioned that Smart Antialiasing (see 5.13.3) does not work with this function. The reason
is that t1lib has no notion of the quantity “size” when it gets the outline to process. Hence,
Smart Antialiasing can’t work in this case. As noted above, the outline is consumed by the
filling functions so that there is no need to free it explicitly.

5.14.3 Manipulation of Outlines

t1lib provides some limited further functionality to process outlines. First of all, a user would
expect a character to be defined in a coordinate system in which x points to the right and y points
up. Further, a representation of the glyph where all points are specified in absolute coordinates
would be advantageous for manipulating outline-points. This is because most transformations,
linear or nonlinear, need to have an absolute x-value to compute an y-value or vice versa. The
function

void T1_AbsolutePath(T1_OUTLINE *rpath)F()⇒

does exactly what has been described just before, (a) conversion of relative coordinates into
absolute coordinates and (b) inverting the y-direction.

Once a path has been converted into an absolute path, it is suitable for possibly nonlinear
manipulation.14 As an example of what can be done, have a look at figure 5. The string
displayed has been generated by essentially applying the transformation y′ = y(1 + cx2), with
appropriate c. To allow such transformations by the user, t1lib provides the function

14A linear manipulation of path points would rather be realized using the transformation matrices as described
in 5.11.

67

void T1_ManipulatePath(T1_OUTLINE *path,
void (*manipulate)(long *x,long *y, int type))F()⇒

Here, path should be an absolute path as described above. Notice that t1lib has no way to
check whether the path is relative or absolute, this is in the responsibility of the user. The
second argument is a pointer to a function that has a return type of void and that expects
three arguments: two pointers to long-values one integer type. T1_ManipulatePath() works
by iterating through all outline points of path and calling the function *manipulate() for each
outline point. When the function *manipulate() is called, x and y are pointers to the x-
and y-coordinates respectively of the outline point to be processed. That way, *manipulate()
can alter the outline points arbitrarily. The type-argument will be set to the segment type by
T1_ManipulatePath(). As described earlier, the segment type can be one of T1_PATHTYPE_MOVE,
T1_PATHTYPE_LINE and T1_PATHTYPE_BEZIER. Of course, the function manipulate() has to
be written by the user. To make it clear, we consider a function which stretches an outline
horizontally by 1.5. The code fragment for this could be:

.

.

.
void h_stretch(long *x, long *y, int type)
{

double dx;

dx=(double)*x;
dx *=1.5; /* scale x coordinate by 1.5 */
*x=(long)dx;

}
.
.
.

T1_OUTLINE *path=NULL;
path=T1_GetStringOutline(FontID,(char *)SomeString,

0,0,T1_KERNING,20.0,NULL);
T1_AbsolutePath(path);
T1_ManipulatePath(path, &h_stretch);
T1_RelativePath(path);
glyph=T1_FillOutline(path, Modflag);

.

.

.

As the example above already has shown, an absolute path, manipulated or not, must
converted back to a relative path before it finally can be interpreted by the rasterizer. This
conversion is done using

void T1_RelativePath(T1_OUTLINE *apath)F()⇒

As already mentioned with respect to T1_AbsolutePath(), t1lib cannot check whether the
path specified is really absolute. The user has to take care for this.

A few general comments about manipulating paths are appropriate. Although the mechanism

68

a)

b)

c)

d)

e)

Figure 6: The string “Text aligned along a sine wave function” using a period of (a) 500, (b)
200, (c) 100, (d) 50 pixels and (e) again 500 pixels with underlining. The sine amplitude was 30
pixels (in screen resolution).

implemented by T1_ManipulatePath() allows arbitrary manipulation of path points, one must
be very careful in doing so. Figure 6 exhibits some of the problems that may arise. A text string
aligned to a sine function is displayed. In part (a), a pleasing smooth text flow is shown and this
also applies for (b) where the period of the sine has been reduced to 200 pixels. In (c), where
the period has been reduced to 100 pixels, some artefacts already show up. For example, the top
bar of the uppercase “T” has noticeable variance in thickness. In (d), where the period has been
reduced again, the result is hardly readable. Another artefact appears in figure 6 (e): since the
underlining rule is defined by four points only, these points and nothing else is transformed with
the result that the out coming line is still straight and not curved as we would like. From this
discussion we conclude, that such transformations can only be done with reasonable results if
the maximum distance between the outline points of a shape is small compared to the variance
of the outline points that the transformation results in. This rule, although being very fuzzy
and non-mathematical, should give a good estimation of which transformations are valid.

Another completely independent topic is that, at the level where t1lib provides outlines,
their representation is strictly descriptive with respect to points and their connections. There
are no such things like closepath-segments which would take care that a path is really closed,
no matter what the transformation had been. This means, that identical points P1 = P2 have
to be transformed to identical points P ′1 = P ′2, no matter where they appear in the outline.
However, if the transformation is done by by a function (x′, y′) = f(x, y) as suggested, this
should never be a problem.

Finally, one should remember that all computations in the user function manipulate() have
to be done in units of fractional pixels, rather than in pixels. When designing a sine wave as in
figure 6, this must be taken into account with respect to periodicity.

69

5.15 Logical Fonts

It sometimes may be necessary to have a font and an extended or slanted variant simultaneously.
To enable such configurations without needing to declare the fonts two or even more times in
the font database file, t1lib provides the function

int T1_CopyFont(int FontID)F()⇒

It copies the top level data structure of the font given by FontID to another location. The newly
created font refers in fact to the same physical memory as the font FontID as far as Type 1 and
AFM data are concerned. However, no size specific data is copied from font FontID, you can
thus do with the new font whatever you want to. It will get its own size-specific memory area
when the first bitmap is generated using its ID.

It is also possible to reencode a copied font without affecting the original font. This is
possible because a logical font gets its own mapping tables. This allows configurations with one
font at different encodings simultaneously.

In order to keep track that another font is referring to data from font FontID, a reference
counter is managed for every font. The reference counter for font FontID is incremented after a
call to T1_CopyFont().

If the font FontID is not loaded into memory, the function returns −1.
Only physical fonts—those fonts defined in the font database file or added via T1_AddFont()—

may be copied to another font. If a user tries to copy a font which is already logical, the function
returns −2.

If no memory is available for the new font the function return −3. But this should not
happen.

If all goes the right way, T1_CopyFont() returns an integer—lets call it new_ID—which is
from now on a valid font identification number.

5.16 Missing or Invalid AFM Files

t1lib heavily relies on AFM information every time the relative position of bitmaps is of im-
portance. Because AFM information is of high resolution, accumulating positioning errors are
avoided in contrast to what the X11 text drawing functions do. On the other hand, there are
many freely available Type 1 font programs that come without AFM files. This problem has
been addressed in t1lib 0.5. t1lib is now able to generate AFM information on the fly and it
even can generate AFM files from Type 1 font files.

5.16.1 Remarks on AFM Files

Information in AFM files is only relevant for placing character glyphs but not for rasterizing.
The metric values are based on the same coordinate system as used in Type 1 font files, the so
called charspace coordinate system. One unit is 1/1000bp when a font is not scaled or scaled to
1 bp, respectively.

Information in AFM files can divided into several groups:

1. Global Font Information: This information is generally not needed to place characters.
Furthermore, most of this information is also contained in a Type 1 font file itself. This
area is thus of marginal importance for t1lib.

2. Character Width’s and Bounding Boxes: These both are crucial for accurately placing the
character glyphs. Fortunately, these are dimensions are exactly defined by the character

70

outlines themselves. It is thus possible to compute them spending some computational
effort.

3. Ligature Information: For æsthetic reasons, certain character groups are often replaced
by ligatures and a font file may define several ligatures. It is however not intuitively clear
what character groups should be replaced by what ligatures.15 Fortunately, ligatures are
not crucially needed for quality typesetting.

4. Pair Kerning Information: This information is quite important for æsthetic reasons but it
is entirely independent from the outline descriptions and can thus not be extracted from
a font file.

5. Track Kerning Information: This information gives hints of how to typeset text generally
closer or wider at varying point sizes. t1lib does not use track kerning information and
I personally do not consider using track kerning a good typographical style.

6. Composite Character Data: This is needed to construct characters from two single char-
acters. Typical examples are accented characters. t1lib currently does not deal with
composite characters. Most of the composite characters needed are already existent inter-
nally.

To come to a conclusion, for our purposes it is sufficient to generate the characters’ widths and
their bounding boxes and we have all information we need to construct string glyphs.

5.16.2 Generation of AFM Information

Next lets consider how to generate the AFM information. It is a series of entirely independent
steps:

• When we generate AFM information, we want to do this once and forever when the font
is loaded. Consequently all characters, have to be examined, not only those that are
currently encoded. We start by fetching all character names the font defines. This done
with T1_GetAllCharNames() (see 5.10.3). This yields a list of possibly more than 256
character names.

• Each of the character addressed by the names above is now rastered at size 1000 bp. By
rastering at 1000 bp we match exactly the charspace coordinate system which the character
outline descriptions are based on. Width and bounding box are easily examined and saved
at appropriate places.

• The kerning pair area and ligatures are explicitly set to zero.

At the end of this procedure, there is a data area identical to what would have been built when
reading an AFM file without kerning-section and ligature specifications.

The decision of building AFM data is done on the fly without any user interaction. Here is
what happens on the metrics-area when loading a font:

• t1lib tries to open an AFM file reading metrics and kerning pair information.

• If this does not succeed, it tries to rescan the AFM file in a sloppy way, only requesting
metrics information.

• If this fails too, metrics information is generated on the fly as described above.
15Well, at least not without some expert knowledge like “I know this ligature’s name is ‘fi’, so I replace every

series of ‘f’ and ‘i’ with it.”

71

It should be noted that generating metric information the way described above takes significant
amount of time since every character has to be rastered at 1000 bp.

If the T1_NO_AFM flag is passed to T1_InitLib(), t1lib will neither attempt to open AFM
files nor generate AFM information. This is useful to speed up applications which do not need
the metrics data. However, this slows down access to certain features, mostly related to the
string processing functions, and completely disables the features that only are contained in
AFM files (like kerning and ligatures).

Obivously, the t1lib functions that use the AFM data will not work correctly in this case
and should not be used.

5.16.3 Writing AFM Files

In order to reduce the situations where AFM data has to be generated on the fly, t1lib provides
the following function:

int T1_WriteAFMFallbackFile(int FontID)F()⇒

It writes an AFM file for the font identified by FontID. This is done executing the following
steps:

1. The AFM filename is constructed by taking the fontfilename, cutting off the extension and
appending .afm.

2. A pointer array of size 256 + n, where n = number of characters, is allocated and set
to NULL. The leading 256 entries are reserved to point to encoded characters’ metrics.
The remaining entries are intended to point to metrics of unencoded characters. We see
that this is a worst case speculation: The pointer array is large enough for the extremely
unusual case that no characters are encoded.

3. Next the function steps through all character names and gets their encoding index i. If
i ≥ 0, the character is encoded and the ith pointer element in the array is set to point
to the metrics of this character. If i = −1, the character is not encoded and the lowest
unused pointer in the second area is set to point to the metrics of this character.

4. Next the AFM file is opened and the header information as well as a comment by t1lib are
written. There are 5 entries that are not trivially to extract from the font file: Ascender,
Descender, XHeight, CapHeight and EncodingScheme. Their discussion is deferred to
later in this section.

5. After the header, the metrics information is written in the format required for AFM files.
This is done by stepping through the pointer array until the first NULL pointer in the
unencoded characters’ area is reached.

The result is a list of char-dimensions entries which is leaded by the encoded characters in
ascending order of their encoding index, followed by a list of unencoded characters in alphabetical
order.

As seen above, the current encoding takes influence on the order the characters appear in
the AFM file. One should thus not produce AFM files from reencoded fonts, although this is
possible. This yields non-standard AFM files and gives no performance gain, even not when
used with t1lib.

The entry EncodingScheme is not always contained in the fontfile itself. It is generated by
comparison between encodings. t1lib has only one builtin encoding, AdobeStandardEncoding,

72

which is recognized. Every further encoding, defined by the font itself or applied by a user, is
always marked as FontSpecific.

The entries CapHeight, XHeight Ascender and Descender are not fully determined by a
Type 1 font file although they are existent with high probability. As rough definitions can be
considered:

• CapHeight: The height a capital ‘H’ reaches to.

• XHeight: The height a lower case ‘x’ reaches to.

• Ascender: The height a lower case ‘d’ reaches to.

• Descender: The depth a lower case ‘p’ reaches down.

It is obvious that these definitions make only sense in certain font definitions. For example,
a musical notation font might not necessarily define an ascender since no capital letters are
provided.

In the Type 1 notion these dimensions are referred to as top alignment and bottom alignment
values respectively. The corresponding alignment “zone”, i.e., an interval, is defined by the
alignment height and a corresponding overshoot position. The alignment zones are specified in
the BlueValues array for top alignment zones and the OtherBlues array for bottom alignment
zones. A Type 1 font may define up to 7 top alignment zones and 5 bottom alignment zones.
It is unfortunately not defined which of these alignment zones refer to CapHeight, XHeight,
Ascender and Descender.

t1lib tries to get out of this dilemma by making a best guess:

1. For each of the characters ‘H’, ‘x’ and ‘d’ it fetches the largest y-value and compares the
result with each alignment zone in the BlueValues array. The alignment zone closest to
the observed character dimension is assumed a candidate for the respective quantity.

2. It checks whether the difference between the alignment zone just selected and the charac-
ter dimension is within a certain tolerance area. This tolerance width is ±30 charspace
units. If the result is positive, the quantity in question is assigned the numerical value
of the standard height (not the overshoot) of this alignment zone. Since we are currently
considering top alignment zone, this will always be the lower value.

3. If the value is out of tolerance or the font even does not define the character, the corre-
sponding entry in the AFM file is left out.

4. A comparable procedure is then done for Descender, this time examining the OtherBlues
array.

Note that if the values do not seem to be correct, the corresponding lines can be removed from
the AFM file without doing any harm. These entries are optional only.

T1_WriteAFMFallBackFile() can indicate a number of error conditions by returning appro-
priate values. These are:

• 0: No error occurred, AFM file was successfully written.

• -1: The AFM data for the font in question has been generated by reading an AFM file,
there is no need to generate a new one. If you really want to force an AFM file to be
written, take care that t1lib does not find an AFM file when loading the font.

• -2: The font in question is not loaded.

73

• -3: The font in question is loaded but AFM data has not been generated. This definitely
is an error condition because it indicates not all characters of the font could be rastered,
either because the font file is damaged or because there were insufficient system resources.
In any case the application should generate a logfile and this file should be examined.

• -4: The AFM file could not be opened. This could be a permission problem or something
else. The file is always opened in the current working directory.

• -5: The file has successfully been opened but there was an error writing to the file.

• -6: A memory allocation error occurred. This should not happen because it indicates
there are no system resources.

5.17 Font Subsetting

When applications have to setup Postscript files for printing, the problem is that these files
often grow large. Each font which is not known to the Postscript interpeter, i.e., usually each
font that is not part of the set of 35 standard fonts, has to be downloaded as part of the file.
The size of a particular font file often can be reduced by font subsetting, because usually only
a small subset of the available character descriptions is actually needed.

5.17.1 Font File Organization and Subsetting

Each Type 1 font file is a special Postscript program defining three Postscript-dictionaries:

• FontInfo
Global font information like font and family name and encoding scheme is stored here.
This data is required even for a subsetted font. However, as will be described later, the
encoding scheme may be reduced to those characters that are in the desired subset.

• Private
This dictionary is in the encrypted part of the file and stores global font data too. This
data includes quantities parameterizing hinting and subroutines that might be called by
the character descriptions. This data is required also.

• Charstrings
For each character defined in the font a binary and encrypted byte string (charstring)
coding the character outline is stored in this dictionary. The number of charstrings may
be considerably larger than the size of the encoding vector. This dictionary usually con-
stitutes the largest part of the font file and, consequently, it is the place to reduce storage
requirements.

The main principle in subsetting is to decrypt the font and reorganize it, leaving out charstrings
that are not required in the current context. For example, if a document uses only the character
’A’ from the font Garamond, then this font may be subsetted preserving the character outline for
’A’ only. The resulting file, which will be much smaller than the original file, can then be included
verbatim into the Postscript file containing the document. At the same time, optionally, the
encoding vector could be redefined to contain only the entry for ’A’ at the appropriate location
and .notdef otherwise.

A still more consequent subsetting would involve leaving out those subroutines from the
Private-dictionary that are not needed by the preserved charstrings. Leaving out some subrou-
tines on the other hand would require to interprete and check all charstrings for the subroutines
they require and all preserved charstrings would have to be adapted to the reorganized index.
Since the subroutines usually do not consume that much memory this is not considered worth
the effort.

74

5.17.2 Functions for Subsetting

There are two ways to obtain a subsetted font from an existing file. The user can (1) do it step
by step which requires reading, decrypting, reorganizing and encrypting of the font file, and
(2) use a high level function to do it without having to know anything about the details. For
font subsetting, t1lib provides the function

char *T1_SubsetFont(int FontID, char *mask,
unsigned int flags, int linewidth,
unsigned long maxblocksize,
unsigned long *bufsize)F()⇒

It returns a pointer to a memory block containing the subset data. The memory is allocated in
the function and it is the responsability of the user to free this memory. The parameter FontID
as usual is used to tell t1lib which file or font is to be used for the operation.

mask points to an array of characters which has to be setup by the user. This array must
comprise exactly 256 characters and for the index of each non-zero entry the charstring re-
sulting from the current encoding is preserved in the subsetted font. To give an instance, if
the subset should consist in the character ’A’ only and we assume the current font specifies
StandardEncoding, then the mask-array should be initialized to zeroes and mask[’A’]=1 or
some other non-zero value.

The flags parameter allows to control the subsetting operation. It usually should be set
to T1_SUBSET_DEFAULT. In this case, the subset is ASCII-hex encrypted, that is, as in a .pfa-
file. It is thus well-suited for the verbatim insertion into a Postscript file. If the source font
file in question defines the encoding to be StandardEncoding, the encoding is not adjusted to
the subset specified by mask. By contrast, if the font defines a FontSpecific encoding, this
encoding will be adjusted according to the subset. This default behavior—which mimics what
e.g. dvips seems to do—may be overwritten by OR’ing flags with T1_SUBSET_FORCE_REENCODE,
which leads to adjusting the encoding vector in any case. Conversely, reencoding can be sup-
pressed unconditionally by OR’ing flags with T1_SUBSET_SKIP_REENCODE. If flags is OR’ed
with T1_SUBSET_ENCRYPT_BINARY, a buffer of mixed ASCII, binary and EOF segment types is
created and encryption is performed in binary mode. The buffer’s contents in this case repre-
sents a valid compact binary format file (.pfb). It is considerably smaller than a comparable
.pfa-file but it is not suitable to be inserted into Postscript files.

The parameter linewidth is used to specify the line length if ASCII-hex encryption is used.
Since—according to the Adobe speification—the first 8 encrypted bytes have to be stored one
after the other without interspersed white space, the allowed range of linwidth is limited to 8
at the lower bound. It is also limited at the upper bound by 1024, because writing that long
lines does not preserve the readability of the produced file.

The parameter maxblocksize is important if binary encryption is used. Then, this value
specifies the maximum allowed segment size. For similar reasons as discussed above, this value
must be equal to or larger than 4. There is no limit at the upper bound, because the maximum
segment size can be derived automatically follows from the target font file.

bufsize must be a valid pointer to an unsigned long int in the context of the calling
function. The size of the memory area to which the function returns a pointer, is written to
bufsize. The calling function needs this number to process to buffers contents, e.g., to write it
to a file.

If errors occur in this function, NULL is returned and T1_errno is set to an appropriate value.
If the font corresponding to FontID is not loaded, T1_errno is set to T1ERR_INVALID_FONTID.
T1ERR_INVALID_PARAMETER is used to indicate that one of the further arguments is out of

75

range. T1ERR_ALLOC_MEM and T1ERR_FILE_OPEN_ERR may also be set in this function. Fi-
nally, T1ERR_UNSPECIFIED may also be set if the charstring definition for .notdef could not be
located. This is considered to be a fatal error.

An example of how to use the function described above is given in the file subset.c in the
examples/ subdirectory of the distribution.

5.17.3 Further Functions for Subsetting

For the sake of completeness, there are a few further functions in the subsetting module. The
function

char *T1_GetCharString(int FontID, char *charname, int *len)F()⇒

returns a pointer to the charstring of the character with name charname of the font identified
by FontID. In case of an error, NULL is returned and T1_errno is set to T1ERR_ALLOC_ERR if
there was not enough memory for storing the charstring, T1ERR_UNSPECIFIED if the charstring
was not found in the dictionary, T1ERR_INVALID_FONTID if the font in question is not loaded or
T1ERR_INVALID_PARAMETER if charname or len is NULL. The memory pointer which is returned
is managed static in this function. Thus, it should not be free’d by the user, or, in case the
memory block is free’d, the pointer must be set to NULL.

In order to decrypt a charstring, the lenIV-value of the font in question must be known. It
can be obtained using the function

int T1_GetlenIV(int FontID)F()⇒

The returned value indicates how many leading random bytes are used for charstring encryption
in the font FontID. According to an undocumented Adobe convention, the value −1 is also valid
and indicates that the charstring is not encrypted at all. Hence the return value −2 is used to
indicate an error. In this case, T1_errno is set to T1ERR_INVALID_FONTID, which indicates that
the font in question is not loaded.

5.18 Composite Characters

This section discusses the composite character information that may be present in AFM files
and how this information is represented, accessed and handled in t1lib.

5.18.1 General remarks

Composite characters are defined by the fact that they are constructed from at least two inde-
pendent symbols. In practice there frequently appear two components, a base character and an
accent, e.g., as in “Ä”. Usually, the accents (or secondary pieces) of a composite character are
typeset first without causing any horizontal escapement and finally the base character itself is
typeset and causes its escapement to become the escapement of the whole composite character.
Although some people recommend that the character definition of an accent itself should not
cause escapement, this generally is not respected in real fonts and t1lib does not require this
condition to be fulfilled.

In order to construct a composite character the characters to be put together have to be
known and metric information about how to put these characters together has to be known too.
t1lib defines two structures as new data types for this purpose. The first is

typedef struct
{

76

int compchar;
int numPieces;
T1_COMP_PIECE *pieces;

} T1_COMP_CHAR_INFO;

Here, compchar is the index in the encoding vector of the composite character. numPieces
specifies how many pieces are required to build the composite character. The third element is a
pointer to an array of type T1_COMP_PIECE, whose actual length is given by numPieces: Each
piece (or symbol) receives one slot in this array. T1_COMP_PIECE is defined by

typedef struct
{

int piece;
int deltax;
int deltay;

} T1_COMP_PIECE;

It contains the encoding index of the symbol in piece and information where to place this
symbol with respect to the composite character’s orgin in deltax and deltay. The first slot is
filled by what I refer to as the base character, it is the one that causes spacing. As can be seen
in these data structures, composite character handling in t1lib is based on encoding indices
rather than on character names, which, by contrast, are used for the definition of composite
character data in AFM files.

The presence of composite character information in AFM files does not tell anything about
whether a font has an internal definition of this character or not. For example, the font
TimesRoman internally defines the CharString Adieresis and hence this font provides the let-
ter “Ä”, assuming an appropriate encoding, without any knowledge about composite charac-
ters. However, the file TimesRoman.afm may still provide composite character information for
Adieresis, just to tell an application that this glyph consists of more elementary pieces and how
to construct it. On the other hand, if TimesRoman had no CharString-definition for Adieresis,
the composite character information of Adieresis provides an application with enough infor-
mation to be able construct Adiereis from the elementary units A and dieresis that the font
provides.

5.18.2 Accessing Composite Character Data

This section describes a few functions that provide access to composite character data of a font
file. The data they return can be considered a mapping of the original AFM data with respect
to the current encoding. As usual, FontID must be the identifier of a font loaded into memory,
otherwise an appropriate error indicator is returned. The functions described in the following
may also return some other error types.

Firstly,

int T1_GetNoCompositeChars(int FontID)F()⇒

tells the user how many composite character definitions are given in the AFM file. This, of
course, does not depend on the current encoding vector and it is even possible that the current
encoding vector does not incorporate any composite character at all.

The function

int T1_QueryCompositeChar(int FontID, char char1)F()⇒

77

checks whether composite character information exists for the encoding index char1. If so, it
returns the index within in the AFM composite character data array as a number equal to
or greater than zero. If the result is valid but no composite character information has been
found for char1, −1 is returned. In case of an error, −2 is returned and T1_errno is set to an
appropriate value.

The previous function does not tell anything about whether the font FontID incorporates a
character definition for the composite char or not. This can be queried using

int T1_IsInternalChar(int FontID, char char1)F()⇒

It returns 1 if there exists a CharString for char1 and 0 if not. In the latter case, the application
is responsible for the construction of the composite character (see later). T1_IsInternalChar()
also might return −1 and set T1_errno, which indicates that the font in question is not loaded.

The information required to construct a composite character is retrieved by calling the
function

T1_COMP_CHAR_INFO *T1_GetCompCharData(int FontID, char char1)F()⇒

It returns a pointer to a meaningfully filled struct of type T1_COMP_CHAR_INFO as described
above. The composite character and the number of pieces as well as a pointer to the array
of type T1_COMP_PIECE are stored in this structure. Once this information is obtained the
composite character can be constructed by

• placing the accent symbols in a loop that ranges from 1 to numPieces−1. In practice
this loop will often be executed only once. The initial current point must always be
restored. In this loop positioning information is accessed by ptr->pieces[i].deltax and
ptr->pieces[i].deltay, where ptr is the pointer returned by the above function.

• placing the base character (pieces[0]), which then also causes the horizontal escapement
of the composite character.

In cases where char1 is not a composite character, the compchar entry is set to char1 itself
and numPieces becomes 1, as would be expected. The pieces pointer is then set to NULL. In
case of errors, this function returns NULL and T1_errno is setup correspondingly.

The pointer returned by this function should always be free’d using T1_FreeCompCharData()
in order to avoid memory leaks (see also Section 5.8).

A function that provides the same functionality is

T1_COMP_CHAR_INFO *T1_GetCompCharDataByIndex(int FontID, int index)F()⇒

In this case, the information is requested by means of an index index in the AFM composite
character data array. This function is thus well-suited for scanning the complete composite
character information of a given font in a given encoding. index may, for example, be obtained
by a call to T1_QueryCompCharData() as described above. The valid range for index is from 0 to
the value returned by T1_GetNoCompositeChars() minus one. The range of index is validated
and in case of an error T1_errno is to T1ERR_INVALID_PARAMETER. There may also appear other
errors and under any erroneous condition, NULL is returned.

The parameter compchar of the T1_COMP_CHAR_INFO structure that is referenced by the re-
turned pointer, bears somewhat more information for this function than in the case of
T1_GetCompCharData(). As said it contains the index in the encoding vector where the compos-
ite glyph is encoded. It may also have the vaue −1, which means that the composite character
is not encoded. Note that this is not an error condition.

78

5.18.3 Transparent Handling of Composite Characters and User Extensions

Aside from the fact that composite character information may be accessed in t1lib, t1lib can
automatically—and completely transparently with respect to the user—compose characters if
it finds information on how to do so. To give an instance, let us examine the font Computer-
Modern Roman (cmr10). Because this font is specially encoded for the use with early (7-bit)
TEX-systems, it does not incorporate a definition for Adieresis. The definition simply was
not required because TEX itself constructed the composite character by means of its \accent-
primitive. If a font like cmr10 is reencoded e.g. to IsoLatin1 encoding, the character “Ä” will
show up as a blank because there is no definition for Adieresis. Now, if the corresponding
AFM file is extended with the following lines, it becomes possible to access an Adieresis:

StartComposites 1
CC Adieresis 2; PCC A 0 0; PCC dieresis 100 200;
EndComposites

This line in an AFM file provides information about how to construct an Adieresis from the A
and dieresis glyphs, and t1lib can utilize this information to construct the requested glyph
without that this will be be noticed by the user.

Composite character are treated just the same way as standard characters. They are cached,
they can be scaled, transformed etc. Let us assume that the cache is still empty and a character,
identified by its encoding index, now is to be rastered. The following happens in the rastering
function:

1. t1lib looks up the character’s name in the encoding vector and tries to locate the
CharString for that character. If this succeeds all works as usual, notwithstanding the
fact that there might have been composite character information for that char. This
means, font-internal CharString-definitions have highest priority: One cannot, for exam-
ple, re-define an Adieresis by raising the umlaut “¨” via a composite character definition,
if Adieresis is defined internally.

2. However, if the CharString is not found, composite character information is examined and
if possible, elementary units are used to construct the requested composite character by
concatenating paths.

In any case, the resulting character is put into the cache and is from then on available as any
other character. If pieces of a composite character are not found in the CharStrings dictionary,
those pieces are substituted by .notdef, so that for extreme cases the whole composite character
might be substituted by a .notdef. Then, an appropriate message is put into the log file with
priority T1LOG_WARNING and T1_errno is set to T1ERR_COMPOSITE_CHAR.

In the same way t1lib composes characters without user intervention, the functions for
character metrics are aware of composite character information and the returned result are also
valid for those functions.

5.18.4 Caveats

Although handling of composite character is widely automated, problems may arise. Most
importantly it is the responsibility of the user to take care that font file and AFM file provide
consistent data. Alas, this is not always true for existing font and AFM files. If, for example, an
AFM file is extended by composite character definitions and these composite character definitions
reference symbols that are not defined in the CharsStrings dictionary, errors will result. If
composite character information is added to an AFM file, the following rules have to be respected:

79

• The name of the composite character has to be encoded because it could not be accessed
otherwise. Furthermore, no internal definition in the CharStrings dictionary may exist
because this would override the composite character definition from the AFM file.

• The user should verify that all components of a composite character definition have entries
in the CharStrings dictionary. This can be checked for example by using
T1_GetAllCharNames() or by disassembling the font file.

• Even being more restrictive, the user should take care that all pieces of a composite char-
acter are encoded. For t1lib this is really irrelevant because, internally, characters may
be accessed by the name of their CharString. This means t1lib simultaneously has access
to all characters defined in a font. However, an application that exports PostScript files
can only access character definitions via their position in the encoding vector. Composing
a character from pieces of different encodings will require two font definitions in a exported
PostScript file for typesetting one character, which cannot be termed a clean strategy.

5.19 Error Handling

Although every function usually returns meaningful values, there are situations where indicating
an error via the return value is not possible. For example, requesting a charspace bounding box
from a char of a font which is not loaded will return a bounding box containing all zeroes. This
cannot be considered an error-condition since for characters like “space” it is correct to return
a bounding box containing all zeroes. Furthermore, there’s no consistent scheme which value
should indicate what type of error. In order to allow a unified error handling in applications,
the global variable T1_errno has been introduced.

The functionality of T1_errno is analogous to that of the global errno in C programs.
T1_errno is once set to 0 when the library is initialized and never reset by any t1lib-function.
It is set to specific values when specific types of errors appear. An application may then act
appropriately and reset T1_errno. The errors that might appear can be roughly split into three
categories as described below.

5.19.1 Type 1 Font File Scan-Errors

These types of errors can only appear at the time a font file is loaded. These kinds of errors are
indicated by negative values:

• T1ERR_SCAN_FONT_FORMAT (-5): A Multiple Master Font was attempted to be loaded.
These are not supported by t1lib.

• T1ERR_SCAN_FILE_OPEN_ERR (-4): This value indicates that the Type 1 font file could not
be opened by the parser. It usually does not mean that the file does not exist because this
problem would have shown up at the time the font database had been built. It is more
likely a permission problem. Anyhow, the C library variable errno should be examined
for getting an idea of what the problem was.

• T1ERR_SCAN_OUT_OF_MEMORY (-3): A Type 1 font program required more than 262144 bytes
of VM. This is a limit imposed by t1lib because it usually means there goes something
wrong. Typical values of VM consumption are between 30000 and 60000 bytes depending
on the fonts’ complexity. If this limit really does not suffice the constant MAXTRIAL (defined
in lib/type1/fontfcn.c) may be set to some larger value.

• T1ERR_SCAN_ERROR (-2): An error occurred during scanning the font file. It usually means
that the font file is damaged or does not comply to the conventions of Type 1 font files.

80

For example, an encountered token might have been too long. Another reason could be, a
literal name follows a literal name where a number was expected. There is no way to recover
from this error. One last resort could be to disassemble the font (e.g., using t1disasm from
the t1utils package) and scan the resulting human-readable file for possible violations of
the Type 1 font format specifications. However, some knowledge about the format is in
force.

• T1ERR_SCAN_FILE_EOF (-1): A premature end of file was encountered during parsing. The
file is damaged.

5.19.2 Path Generation Errors

Small positive number are reserved for errors that might appear during path construction and
rasterization.

• T1ERR_PATH_ERROR (1): An error occurred during path construction. The font file is most
probably damaged.

• T1ERR_PARSE_ERROR (2): This kind of error describes a kind of “semantic” error in the font
file. A typical candidate for this is a font that does not define a character named .notdef,
although this is required by the format specification. Since under usual conditions the
.notdef character is never accessed, this error would not show up. But if for some reason
the .notdef has to be substituted for some other character the problem becomes evident.

• T1ERR_TYPE1_ABORT (3): The abort()-function of the rasterizer has been called. This
may happen at several places during hinting, converting to edgelists etc. There is a certain
chance that unfreed memory has been left. If this error appears and a logfile is used, an
error string giving some more info is placed into the logfile.

This error should not appear, normally. If it does, either the font file is damaged or the
font contains invalid outline descriptions such as unclosed paths. Especially the latter
is quite unlikely. Of course this error can be raised, when an outline has been modified
manually in an invalid way and is then rastered (see. 5.14.3).

5.19.3 t1lib-Errors

The remaining types of errors are detected by the management of t1lib. Their numbering
starts with 10 (decimal). The list could be extended in future releases.

• T1ERR_INVALID_FONTID (10): An invalid font ID has been specified. The exact meaning
of this error depends on the specific situation, in any case the operation requested cannot
be realized with the identified font. Possible reasons are:

– The font ID points to a font which is not loaded and which must be loaded in order
to perform the operation.

– The specified font ID is a number which is generally out of the range of the valid font
IDs, either because it is < 0 or because it is > the value of no_fonts.

– The library is not yet initialized so that no font ID at all is valid.

• T1ERR_INVALID_PARAMETER (11): One or more of the parameters specified to a function call
were assigned invalid values. For example, a size-value specified to a rastering function
must always be > 0. Just the same way, T1_ConcatGlyphs() cannot concatenate two
glyphs if one of them is the NULL pointer.

81

• T1ERR_OP_NOT_PERMITTED (12): An operation that was not allowed at that time has been
requested. This error could result, for example, if an application tries to set a new bitmap
padding value after t1lib has been initialized.

• T1ERR_ALLOC_MEM (13): This error indicates that t1lib ran out of memory and a memory
allocation failed. This error should not appear.

• T1ERR_FILE_OPEN_ERR (14): A file that was needed could not be opened by t1lib.
The file might have been necessary for reading data or writing data. For example,
T1_WriteAFMFallbackFile() returns this value if the AFM file could not be opened for
writing and T1_LoadEncoding() returns it if the encoding file specified as argument could
not be opened. Notice that there is no indication of the reason why the file opening failed.
The C library variable errno should be examined to analyze this further.

It should be mentioned that T1ERR_FILE_OPEN_ERR is only set if a file operation failed
which was really in force. This means that at the time a font is loaded a missing AFM
file does not cause T1_errno caused to be set to T1ERR_FILE_OPEN_ERR. This is because
t1lib can automatically recover from this by generating AFM information on the fly (at
the cost of computation time).

• T1ERR_UNSPECIFIED (15): This value indicates nothing apart from that an error occurred
and this error was not one the other errors. It can be considered a fallback.

• T1ERR_NO_AFM_DATA (16): A function has been called which needs AFM information and
AFM information is not available, either because all attempts to generate AFM data failed
or because the flag T1_NO_AFM has been specified as part of the flag for T1_InitLib().

• T1ERR_X11 (17): An error in an X11 library function occured. This could be caused by
calling a function of the X11 interface without prior initialization of the X11 interface via
T1_SetX11Params().

• T1ERR_COMPOSITE_CHAR (18): A request to compose a composite character could not be
fulfilled without problems because at least one part of the composite character was not
found in the CharStrings dictionary. This is bad because it indicates that font file and
AFM file do match. Further errors or unsatisfactory rastering results have to be expected.

• T1ERR_SCAN_ENCODING (19): Scanning an encoding file failed. Since t1lib uses a fallback
approach—DVIPS-encoding is tried first and afterwards t1lib-encoding—it is not clear at
which place exactly a failure occured. However, further hints about what t1lib thought
about the file in question may be found in the log file.

In analogy to the Standard C Library function strerror(), t1lib provides the function

const char *T1_StrError(int t1err)F()⇒

It returns a pointer to a string describing the error corresponding to t1err. Usually, the argu-
ment should be directly specified as T1_errno. The memory where the returned string is stored
is static in t1lib so that it may not be free()’d.

5.20 Other Useful Functions

This subsection describes a few functions that had not been described up to now but which
however could be useful.

82

int T1_CheckEndian(void)F()⇒

This function may be used to check the endianess of the hardware t1lib is running on. The
return value is 0 for Little Endian and 1 for Big Endian machines.

void T1_DumpGlyph(GLYPH *glyph)F()⇒

This function might be useful for debugging and testing t1lib. It dumps an ASCII representa-
tion of the glyph pointed to by glyph to the standard output. A background pixel is represented
by . while a foreground pixel is represented by X. After the number of bits that correspond to
the current padding value, an empty column is inserted. See the output of the programming
example in 2.4. In this case the padding values has been 16.

Note that the size of the glyph should be small enough that its padded width does not exceed
the terminals line width. Otherwise the result might become illegible.

void T1_DumpPath(T1_OUTLINE *path)F()⇒

This function dumps a description of an outline to the standard output. It is exclusively intended
for debugging purposes.

void T1_SetRasterFlags(int flags)F()⇒

This function allows to enable or disable certain features of the rasterizer. Let me emphasize
that this is exclusively intended for debugging and error tracking. The default value of flags
is 0 which means that no debugging output is shown and hinting is performed as suggested in
the Adobe Type Font Format. However there may arise situations where fiddling with the flags
might be helpful in rasterizer and font debugging.

flags usually is an OR’ed combination of the following definitions:

• T1_IGNORE_FORCEBOLD

• T1_IGNORE_FAMILYALIGNMENT

• T1_IGNORE_HINTING

• T1_DEBUG_LINE

• T1_DEBUG_REGION

• T1_DEBUG_PATH

• T1_DEBUG_FONT

• T1_DEBUG_HINT

The T1_IGNORE_... types allow to selectively disable hinting. They might be useful if parts
of a font are not properly rendered. For example, substituting a font’s alignment zones by the
family’s alignment zones might result in visual artifacts if the values for FamilyBlues are not
correct. Disabling family alignment might reveal the problem in such cases.

The T1_DEBUG_... types produce debugging output from the intermediate rasterizing steps.
Notice that to understand this output a thorough understanding of what happens in the raster-
izer is in force. Moreover, be prepared that thousands of lines might be written to the terminal,
depending on the particular option.

83

6 The X11-Interface

As of V. 0.3-beta t1lib incorporates some special functions that can make life easier for X11
programmers. Prior to further discussions it should be noted that these functions, which itself
use functions Xlib are fully optional so that t1lib can still be compiled and used on systems
without X11.

6.1 Why a Special X11-Interface?

Although it initially was an explicit goal to make the library independent of X11, there are some
strong arguments voting for a subset of functions adapted to X11 features. Here are some of
them.

• X11 can be considered a standard under UNIX and graphical applications under UNIX
would to a high probability rely on X11. For this reason it would not degrade portability
much when using X11 features.

• The standard rastering functions of t1lib strictly use the principle of generating bitmaps.
The rastering functions return bitmaps of a specific size with reference point at upper left
corner and additional geometric information to tell the user how to position the bitmap
correctly with respect to the current point. A more natural approach would be to have
functions that draw on some existent area at a position and orientation to be specified
with the logical origin of the text taken into account.

• The standard functions do not deal with color at all. This is especially complicated in the
case of antialiased fonts. If some application wanted to use an existent (already cached)
font, all characters would have to be removed from memory and recreated using the new
color values.

• In case of antialiasing the user has to make a decision on the depth of the bitmaps. But
what if an X-application uses drawables of different depths? Such configurations could
raise the programming effort up infinity (well, alomst).

• The standard functions cache their bitmaps locally, i.e., on the machine where the X11-
client runs. Every characters bitmap has thus to be transferred to the X11 server again
and again. This might cause an performance degradation, especially if the client runs on
a remote machine with a slow or heavy-loaded network connection.

Taken these arguments into account I decided to create an additional “special” set of functions
that allow uncomplicated usage under the X11 window system, similar to the Xlib-function
X11DrawText(). The approach used in V. 0.3-beta has been a quite elegant solution to the
problems considered above. Unfortunately, it has been too slow to be usable in practice. Fur-
thermore, caching in the X11-server produced some overhead and difficulties. According to my
experiences server caching would only be advantageous for very large characters such as 500 bp
and more. As a consequence, the X11 interface is redesigned and reduced to a simple wrapper
which deals with all but the last of the above items, from t1lib V. 0.4-beta up.

6.2 Initialization of the X11-Interface

There are a few things t1lib must know in order to be able to do its job properly. These
parameters are defined by a functioncall to

84

int T1_SetX11Params(Display *display, Visual *visual,
unsigned int depth, Colormap colormap)F()⇒

display is the pointer to the structure of the display the application is connected to. It is once
specified here because this avoids the need of repeatedly having to specify this pointer.

visual is the pointer to the structure of the visual on which t1lib should create the XImages
that will be transferred to the X server when using antialiasing. In most cases it should be safe
to specify DefaultVisual(...).

The depth-argument specifies the depth that t1lib will use when creating antialiased
pixmaps. It is thus identical to the value bpp supplied to T1_AASetBitsPerPixel() (see 5.13).
The depth must be one of the depth supported by the visual as specified above.

colormap is the specification of an X11 colomap. It is needed because t1lib might need to
allocate some more colors for antialiasing purposes. The same colormap that the application uses
should be specified here. If the application uses no special color handling, DefaultColormap(...)
is probably the right value.

As mentioned before, the X11 rastering functions put the characters with their origin at the
specified point. This behavior, being the default, can be switched by calling

void T1_LogicalPositionX(int pos_switch)F()⇒

Specifying pos_switch=0 has the effect that in subsequent calls to X11 rastering functions the
result will be placed with the upper left corner at the specified position. The default behavior
can be restored by calling this function again with some non-zero value.

6.3 Rastering Functions

In analogy to the standard rastering functions the t1lib X11 interface provides six functions
for generating character and string bitmaps, rectangles as well as their antialiased equivalents:

GLYPH *T1_SetCharX(Drawable d, GC gc, int mode, int x, int y,
int FontID, char charcode,
float size, T1_TMATRIX *transform)F()⇒

GLYPH *T1_SetStringX(Drawable d, GC gc, int mode, int x, int y,
int FontID, char *string, int len,
long spaceoff, int modflag,
float size, T1_TMATRIX *transform)F()⇒

GLYPH *T1_SetRectX(Drawable d, GC gc, int mode, int x_dest, int y_dest,
int FontID, float size,
float width, float height,
T1_TMATRIX *transform)F()⇒

GLYPH *T1_AASetCharX(Drawable d, GC gc, int mode, int x, int y,
int FontID, char charcode,
float size, T1_TMATRIX *transform)F()⇒

85

GLYPH *T1_AASetStringX(Drawable d, GC gc, int mode, int x, int y,
int FontID, char *string, int len,
long spaceoff, int modflag,
float size, T1_TMATRIX *transform)F()⇒

GLYPH *T1_AASetRectX(Drawable d, GC gc, int mode, int x_dest, int y_dest,
int FontID, float size,
float width, float height,
T1_TMATRIX *transform)F()⇒

Instead of explaining everything in detail, we will discuss only those items that are different
from the standard rastering. For discussion of the parameters FontID, charcode, string, len,
spaceoff, modflag, size and transform see 5.5.

The drawable parameter specifies the X11 drawable into which the text will be drawn. It
may be either a pixmap or a window.

gc is the graphics context in which the operation should take place. Obviously, the most
importamt components of the graphics context are the current foreground and background color.
t1lib uses these colors to draw the text/background.

The value of mode determines whether opaque or transparent mode is used. In opaque mode
all pixels including background pixels are drawn. This means the whole area of the bounding
box of the character/string is painted. In transparent mode, only non-background pixels are
drawn so that underlying graphics are minimum affected. One could imagine that as drawing the
text on a transparent slide and overlay the result with the existent graphics. Using transparent
mode should be somewhat slower, especially for the antialiasing functions since the information
which pixels are background and which not has to be generated first. Moreover, the clipmask
of the current graphics context is modified when drawing text in transparent mode.

x and y define the position coordinates where the origin of the text will be located in the
drawable. t1lib does no checking of this position so that bad positioned text might not appear
at all in the drawable without getting an error—it is simply clipped to the limits of the drawable.

The non-antialiasing functions will take the fore- and background color from the specified
graphics context. The antialiasing rastering functions work a little different. They also respect
the current foreground and background color. The “graylevel” colors are computed on the fly
and allocated in the colormap specified by the user in the call to T1_SetX11Params(). The
term graylevel has been quoted since these are in fact no graylevels at all. They are just discrete
colors from a smooth bleed between the foreground and the background color. The colors are
computed the following according to the following scheme:

1. The current foreground and background color are split into their respective RGB compo-
nents, lets call them fR, fG, fB, bR, bG and bB.

2. Intermediate values are computed between each pair of color components fR–bR, fG–bG
and fB–bB by making a linear interpolation.

3. For each newly created RGB-triple (currently 3) a pixel color is allocated in the colormap
specified by the user in a way that the pixel colors match the theoretical values best.

A general comment on antialiasing: If using transparent mode antialiasing may produce the
opposite effect of what is wanted, depending on the color of the underlying graphics. You can
use the program xglyph to check the effect: Start xglyph and prior to doing anything else click
on button AAStringX . The resulting glyph is antialiased against the background color white

86

but the real background due to transparency is quite different from white. Consequently the
glyph seems to be surrounded by a thin light gray border.

6.4 Creating XPM-Files from t1lib-Glyphs

The creation XPM files is not supported directly in t1lib. Rather, there is a utility function
which prepares what is necessary and leaves the creation of the Pixmap file to the one and only
authority, to the Pixmap library. The required function is:

XImage *T1_XImageFromGlyph(GLYPH *glyph)F()⇒

It creates an X11 image from a valid t1lib-glyph of arbitrary depth, padding and antialiasing
configuration and returns the pointer to the newly created structure. This image can later be
dumped into an XPM file using the XPM library function XpmWriteFileFromImage(). The
following code fragment shows how easy this really is. It assumes that the program containing
that code is additionally linked with the XPM library.

.

.

.
ximage=T1_XImageFromGlyph(glyph); /* generate ximage containg the glyph */
/* write pixmap file */
XpmWriteFileFromImage(display, "glyphtest.xpm", ximage, NULL, NULL);
ximage->data=NULL;
XDestroyImage(ximage);
.
.
.

As already shown in this example code, the user has to take care for that XDestroyImage()
does not free the glyph’s bitmap. This achieved by setting ximage->data to NULL.

Having an XPM file from a t1lib-glyph it should easily be possible to create graphic files
of arbitrary formats, e.g., by using xv.

6.5 Limits of the X11 Interface

A few words about what the X11 interface can do and cannot do are appropriate, I think. Except
for that a few global variables of t1lib are accessible, the whole code of the X11 interface could
as well be part of an application instead of being part of t1lib. In other words, t1lib is not
able to do anything an application program could not do. This applies especially to performance
improvements. Unfortunately—but consequently, the X11 rastering functions are not faster than
the standard rastering functions.

To come to a conclusion, this is what the X rastering functions offer to the user:

• Save the user entirely from thinking about color.

• Offers a set functions comparable to XDrawText().

• Frees the user from having to think about transparency and opacity.

• Implements antialiasing between any given pair of foreground/background colours.

And here is what they not provide:

87

• Functions that perform as if the rasterizer would be part of the X server.

That’s life, folks.

88

7 Internals (incomplete)

Note!
This section is still very incomplete and some facts are not true anymore. This should be kept
in mind. Currently I have no time to write this section. But I try to keep figure 7 consistent

to the current releases. This may lead to inconsistencies between the text and the figure.

In this section, some information on internals of t1lib is given. There is no need for an average
user to read this section although having understood what is going on internally might be helpful
if problems occur.

The basic idea of this section is to describe the data structures and to give information
on when they are initialized, allocated and referenced. Figure 7 shows an image of the data-
structures for the special case that the font with ID 0 has already been loaded and several
size-instances have already been created. As the figure indicates, the complete area may be split
into three different sub-areas, thereby pointing out their logical functions.

7.1 Level 0: Global Data

This area contains information needed for the overall organization of the t1lib. Its contents
and its size are thus determined at the time t1lib is initialized. This is done based on the
contents of the configuration file and the fontdatabase file. The entries in detail are:

• Filename-Searchpaths: This entry essentially does not depend on any other data. It
consists of 4 \0-terminated strings that are read from the configuration file. They are
referenced internally by the global symbols PFAB_ptr, AFM_ptr, ENC_ptr and FDB_ptr
respectively. All these are declared as unsigned char *. These strings are used by t1lib
to locate the respective file types. If no configuration file exists or some path declaration
is missing, the corresponding searchpath is set to “.”, causing t1lib to only search the
current working directory.

• no_fonts_ini: This value is assigned after examining the fontdatabase file. It is meant
to store the number of fonts initially declared in the fontdatabase file. In other words, it
is assigned the integer number located on the first line of the fontdatabase file.

• no_fonts: The number of actually allocated fonts. Initially, this quantity is identical
to no_fonts_ini. But if one creates a new logical font by calling T1_CopyFont() this
counter is incremented to keep track of allocated fonts. no_fonts thus represents most
large FontID minus 1 that makes sense to specify to any function of t1lib.

• no_fonts_limit: The number of fonts for which memory is currently allocated. This also
is initially set to no_fonts_ini and is automatically enlarged to a multiple of the initial
value if a call to T1_CopyFont() requires additional memory for logical fonts (see 5.15).

• bitmap_pad: This variable contains the number of bits to which scanlines of bitmaps and
antialiased bitmaps are padded. It is set during initialization, either to a default value or to
the value the application specified before starting initialization using T1_SetBimapPad().
Allowed values are currently ‘8’, ‘16’ and ‘32’.

89

�������
���	�
�
����
�
�������
�

� �����
�����	�

�

������
���	�
�
������
���

��	��	�
���� �

�� ��
��!

"������
#�	��

����
�
#�	��

��
����
$�!�%&�
'�(�)

��
����
$�!�%&�
'�(�)

�+*,��
���-.
	�
�$�
�

�0/���
���1*,��
����+
�2��0��
����!

�03��
��4�*,
������+
�2��0��
����!

��-.$�
	���+
��	�
�
�+56��

�	�

7
��	�
��!��2�
�

�����	�
����	�

�	�!

��
����
$�!�%&�
'�(�)

�+*,��
���-.
	�
�$�
�

�0/���
���1*,��
����+
�2��0��
����!

�03��
��4�*,
������+
�2��0��
����!

��-.$�
	���+
��	�
�
�+56��

�	�

7
��	�
��!��2�
�

�����	�
����	�

�	�!

�+*,��
���-.
	�
�$�
�

�0/���
���1*,��
����+
�2��0��
����!

�03��
��4�*,
������+
�2��0��
����!

��-.$�
	���+
��	�
�
�+56��

�	�

7
��	�
��!��2�
�

�����	�
����	�

�	�!

8�9;:<�
=�9?>+
@�A0B=�
@�CED�
@�=0BF;
B=�8

BG�9�HJ
I�K?LJ
D

BG,9�HM
I�N�N�
K?O�D�
D

BG�9�CP
@�9;Q0
<�G,=0
R0@�S?
<�@�8�
9;T>

Q0BU@?
G,N?VJ
@

C?@�NP
:=0W�
D�N�9;
W

CP9X<�
FF

=+W�N?
:�@P:Y
:K�ZJ
N?:G�
KPVM
8�[�K?
O�<�F;
\I�]�^�
_�`

Q0Ta�
bdc;9;
I�UBO�
KPUe�[�
K�FXBU@

BG,9�9X
I�UBO�
K?Ue�[�
K?U@�A�
@?U

BG�9�HJ
I�K�@?
::G�e

�������
��f7 ��
���!�f�
����

�������
��f7 ��
���!

�������
��f7 ��
���!�f�

�gM��

�����h�
��g�	�
��f���
	��

�������
�����	�
�

�0*,��
���i��
�	��

�$�	�
��jYjY��
�7 	� �

�f���
��

�0*,��
���1*,�

�0/�	�
g��

�0"���
���#M
	��

�0����

�#M	�
�

������
���0��
�k	��	

��il*,
#m�k
	��	

�+*,��
���1����

4�g�f�
h�	�!,
�

�0*,��
������
2��+�k
����!

���� �
h�
��
*,����
�#�	�
�����%
n�)

���� �
h�
��
*,����
����	�
��!7 ��
�g�%n�
)

7
��	�
��!�
	�
���

�0*,��
���1*,�

�0/�	�
g��

�0"���
���#M
	��

�0����

�#M	�
�

������
���0��
�k	��	

��il*,
#m�k
	��	

�+*,��
���1����

4�g�f�
h�	�!,
�

�0*,��
������
2��+�k
����!

���� �
h�
��
*,����
�#�	�
�����%
n�)

7
��	�
������
������

7
��	�
�+ok��
���p56�0
3���!

7
��	�
�0ok��
���p5;��
��$��
�
q

7
��	�
��rs4�
�X5;�+
3���!

7
��	�
��rs4�
�p56����
$��
�q

7
��	�
��rs4�
�����
q�3���
!

7
��	�
��rs4�
����+
��q���
$��
�q

 ���!�
�������
��!�$�
�������
$���!�
�
�	�

 ���!�
�������
��!�$�
������
�7
���
 ����

!�$���
���!���
	�
���
f�����
!������
�

!�$���
�����
7 ��f7

	���!

7
��	�
��!�
	�
���

tvux
wyu{
zy|y
}�~�
�1�dux
�?����
�vu�
�vu�
���v
u{�v
����
���v
����
���P
�

tvuy
wyu{
zy�y
}���
z���
���y
zy��
���?
����
�ku�
�

tvux
wyu{
z���
}�~�
�1�dux
�?��
u{�x
u{��
�vu�
�v��
����
�v��
����
�?�

�k	��	�
���� �

�� ��
��!

i+����
h���
*,����
��#���
���

tvuy
wxu�
zy|x
��}�
��
�y��
����
���¡
 ��y
��zY
u�¢

��z�
����
�yz�
£¤�y
�.���y
��zY
u�¢

¥0¦,§6
¨�©�¦,
¨0§6ª0
«¬m§6
§6­�®°
¯�±

²P³´
ªyµ0
¯�¶0±,
¯0µ�¦
²¶M·
³¸x³¦

���� �
h�
��
*,����
����	�
��!7 ��
�g�%n�
)

Figure 7: The internal data structures of t1lib. The underlying substructures are shown only
for the first font FontID=0.

90

• endian: During initialization the hardware is checked for representation of data in memory.
If Big Endian is used, endian is set to 1 and otherwise it is set to 0. endian is needed at
several times when an application or t1lib itself must know the byte order of words and
long words.

• pFontArray: This a pointer to an array of structures whose type is referred to as
FONTPRIVATE in t1lib. The contents of these structures will be described below. After
t1lib has been initialized, memory is allocated for exactly no_fonts_ini structures. This
memory pool may be enlarged later if the one wants to make use of logical fonts, for ex-
ample. The data in these structures initially is not specified. It is written with meaningful
values when a font is loaded into memory. The index to access this array-elements is the
well known font identification number (FontID).

• pFontFileNameIDArray: A pointer to a memory area where the font file names corre-
sponding to the FontIDs are stored. During initialization, t1lib looks for font files with
extension .pfa and .pfb. The basename of the file found is stored in this area and if the
font is to be loaded later, its font file name is looked up here.

We should now discuss the entries of the structures of type FONTPRIVATE. The term FONTPRIVATE
indicates that every font needs its own structure area. As mentioned earlier, this area is initial-
ized when the corresponding font is loaded.

• pAFMData: A pointer to a memory area where Adobe Font Metric data of the font is stored.
The memory area itself is build by the parse_afm-package which is supplied by Adobe
System and included in t1lib. This happens while a font is loaded. In case there is no
AFM file for the font in question, this pointer is given the value NULL.

• pType1Data: A pointer to the data area where the Type 1 information is stored. The
known PostScript Type 1 objects Charstrings-dictionary, Subroutines, Othersubroutines
and Fontinfo-dictionary are located here. The memory is filled with data during parsing
the font file when the font is loaded.

• pFontEnc: A pointer to an optional external encoding vector. During initialization, this
pointer is set to NULL, thus indicating that by default the font’s internal encoding should
be used. If a font is reencoded using a previously loaded encoding vector from an encoding
file, this pointer simply is assigned the address of a valid encoding array somewhere in
memory.

• vm_base: The base address of the virtual memory required by the font. Unlike the original
rasterizer, which allocated virtual memory in chunks of a fixed size, t1lib uses another
principle. Since it is à priori not obvious how many virtual memory a font consumes,
t1lib tries to load a font repeatedly and increases the amount of virtual memory during
every trial. In order not to waste memory, the memory is reallocated to the needed size
when the font is completely loaded. Finally, the starting address of the virtual memory is
needed when a font is to be unloaded and the memory it consumes is to be given back to
system.

• pFontSizeDeps: A pointer to the area where the size dependent data is to be stored. This
data essentially consists of generated glyphs plus some administrative item (see 7.3).

• FontMatrix: A matrix of four double-values specifying the font matrix. If the FontInfo-
dictionary of the font file defines a FontMatrix, it is copied to this location. If not, a
default matrix is used which does no transformation and scales to 1/1000 bp.

91

• FontTransform: A matrix that will be concatenated with the FontMatrix to produce the
final transformation of the characters. It is this matrix that is modified if a font is to be
slanted or extended.

• slant: A slant factor for the current font. Note that this value is initially 0, even for italic
font. Only artificially slanting a font leads to values different from 0.

• extend: The horizontal extension factor for the current font. Its default value is 1 and the
font is thus rendered at its natural width.

• physical: This is a switch that marks a font either being “physical” or “logical”. A
physical font by definition is a font for which a Type 1 font file is available and for which
thus Level 1 (size-independent) data is present (see Fig. 5.1). In contrast, the term “log-
ical font” refers to a structure of type FONTPRIVATE whose entry pType1Data points to
Level 1 data of another (physical) font. This FONTPRIVATE-structure is created by calling
T1_CopyFont() with the identification number of an existing physical font as argument
(see 5.15).

• refcount: This counter keeps track on how much logical fonts refer to the physical font
that is represented by the current structure of type FONTPRIVATE. In this since, refcount
is only meaningful for physical fonts. It is necessary to keep track of the reference of logical
fonts because if this font would be removed from memory by calling T1_DeleteFont(),
the Level 1 font data memory area would be given back to the system but the logical fonts
referring to that font would still expect to find Type 1 or Font Metric data at this address.
By checking refcount, T1_DeleteFont() can check for logical fonts referring to the font
in question and prevent from removing this font from memory.

In structures describing logical fonts, refcount is used to store the information which phys-
ical font this logical font is referring to. This information is also needed by T1_DeleteFont()
since when removing logical fonts, the reference counter of the corresponding physical font
has to be decremented.

• space_position: This variable stores the encoding index of the “space”-character of
the current font. If the space character does not appear in the current font’s encoding,
space_position is assigned -1. It follows that space_position is assigned when (1) a font
loaded and (2) every time a font is reencoded. Why is it convenient to store the position of
the space character in the encoding vector? The properties of the space character are set
apart from the other characters’ properties not only by the fact that it does not produce
any colored pixels but also by that it may shrink and stretch in t1lib. As a consequence a
space character is treated by simply inserting a horizontal escapement of the width of the
space character—corrected by the quantity space_off that a user may specify (see 5.5).
This involves always checking every character for being the space character and since the
encoding principle is used in t1lib, every check needs a call to strcmp(). This overhead
is avoided if the position of space is stored.

7.2 Level 1: Size-Independent Font Data

Size-independent data may be split into three categories as indicated in figure 7. The external
encoding is optional and is generated by loading an encoding file as described in 5.7. It is simply
an array of 256 pointers to unsigned char and an ensemble of 256 \0-terminated strings. Each
pointer references one of the 256 strings in order. The strings are the characters’ names to be
defined in a t1lib-encoding file.

92

The internal Type 1 data structures hold all data specified in a type font file. I do not
want to describe these data structures here, because this could fill a book. Adobe has made the
description of the Type 1 font format available to the public.

The Adobe Font Metrics area is entirely created by the parse_afm-package. Adobe has made
this available by means of the file parseAFM.shar which is a shell-archive and included in t1lib
in the subdirectory parse_afm.

7.3 Level 2: Size-Dependent Font Data

. . .

93

A B

Figure 8: A Character “8” from font ComputerModern Roman. The arrows indicate the
direction of the paths. From the outer subpath it follows that the inner region will be filled
(left of the path). From this massive black region, the holes are cut by means of the two inner
subpaths (and their direction). B The principle of creating a stroked character by filling a
newly created set of subpaths which surround the original path in an appropriate manor.

8 Stroked Characters

This section is only meant for the reader interested in details about the algorithm used to create
stroked versions from outlines intended to be filled. It can help to understand the code I added
to type1.c, which may seem a little bit strange.

The basic idea to achieve stroked outlines was to map the stroking operation to a simple
filling operation as already implemented by the rasterizer. Why did I choose this approach?
Well, the actual reason for doing so was that I felt like doing so. One of the pivotal problems
in this context turned out to be the computation of a third order Bezier curve, being located in
parallel to a given third order Bezier curve—a problem set which everybody on the net said to
be impossible to solve. After some experimenting I had to admit that these people actually were
right: It is not possible to solve this problem in general, in particular because tracing a given
cubic Bezier spline using a finite pen width might produce delimiting curves which aren’t Bezier
splines at all. In particular, the angular range and the pen width in relation to the original
curve’s bend are of importance.

However, under some constraints, which usually are fulfilled by adhering to the Adobe design
rules for Type 1 Fonts and by choosing reasonable stroke widths, it is possible to approximate
these delimiting curves by cubic Bezier splines.

8.1 Approach

Type 1 character outline descriptions consist of mathematically thin defining curves and lines
with an associated running direction. By convention, regions left of these defining curves are
painted and regions right of these curves are left blank. For each properly defined character, this
way, a finite area to be filled results by applying this rule, especially because for filled characters
every subpath must be closed. Figure 8 A shows the character “8” from the ComputerModern
Roman font as an example. We find three subpaths which by means of their direction relations

94

A B

Figure 9: A Character “t” from font ComputerModern Roman. The original path is shown in
a thick dashed style. Each segment is surrounded by a parallel path to the right hand side and
a parallel path to the left hand side. B Required additional connection segments in order to
complete the outline path.

yield the filled character.
When talking about stroking, we mean tracing a pen of finite width along these subpaths.

When doing so, a new finite (more complex) region of ink is built. Actually we can consider
this filled region being the result of filling a newly created path that consists of two subpaths
surrounding the original path and having appropriate directions. These newly created subpaths
are referred as the right path and the left path. Figure 8 B illustrates this idea for the character
“o”. The original path is represented by dashed curves whereas left paths and right paths are
shown as solid curves. The respective directions are indicated by arrows.

Now, what are the steps required to compute a right path or left path from a given path and
given a certain strokewidth? Firstly, for each path segment two parallel paths the right and the
left path, located half the strokewidth right and left of the original path have to be computed.
This is shown for the character “t” in Figure 9, A .

In particular, it turns out that in order to connect two parallel right or left paths of two
neighboring original path segments, additional path segments are required. Therefore, in a sec-
ond step, these parallel path segments—which in general may be disjoint—have to be connected
appropriately. These additional path segments are shown in B of the figure. We term these
path segments Prolongation Segments. They are always built as straight lines. It is also obvious,
that for convex edges, prolongation actually is what it indicates, and for concave edges, some
trick must be applied so that prolongation yields a path that actually shortens the respective
parallel path segments.

8.2 Computation of Parallel Paths

For straight lines, the notion of a parallel path in distance w/2 immediately becomes evident, but
what about Bezier curves? Let us define the parallel of a curve as the infinite set of points, that
results from tracing along the curve and for each point of the curve computing the point which
in direction orthogonally to the curve’s tangent at the respective location is just the distance
w/2 apart.

95

A

A’

B

C

D

D’

C’

B’

P1

P2

P3

P4

P5

P6

w/2

P6’

A’’

B’’

C’’

D’’

P6’’

Figure 10: Construction of parallel Bezier path segments. The original curve is shown in dashed
style and the light gray area indicates the thick Bezier curve segment that later will result from
filling between left and right parallel path. Furthermore, important intermediate points are
shown. A detailed discussion is given in the text.

The parallel curve resulting from the principle above actually no longer is a third order Bezier
curve. But if a few additional constraints hold, it can be approximated quite well by such a
third order Bezier curve:

• The curvature should not exceed an angular range of 90 degrees. This condition automat-
ically is fulfilled for Type 1 fonts which adhere to the Adobe recommendations.

• The strokewidth w the curve should be drawn width is small compared to the extension
and the curvature of the curve. This principle usually is fulfilled by nature because tracing
a character outline path with a very thick pen won’t lead to a good representation of the
character.

In the following, we will describe how to compute a parallel Bezier curve defined by four points
~A′, ~B′, ~C ′ and ~D′, given an original Bezier curve defined by four points ~A, ~B, ~C and ~D and
a strokewidth w. The computation of parallel straight lines results as the special case of only
respecting the points ~A and ~D from these considerations.

Figure 10 represents the basis of our discussion. It shows the original mathematically thin
Bezier segment defined by the points ~A, ~B, ~C and ~D in dashed style. The counterpart of ~A in
the parallel path follows from simple geometric considerations, as illustrated for the point ~A′.

96

It lies half the strokewidth w away from ~A and the direction is determined by the location of
point ~B. For the two coordinates of ~A′ we find

A′x = Ax +
w

2
By −Ay
| ~B − ~A|

(1)

and
A′y = Ax −

w

2
Bx −Ax
| ~B − ~A|

. (2)

Corresponding equations can be derived for the point ~D′, so that, up to now, we are able to
compute parallel straight line segments. It remains to compute two control points, ~B′ and ~C ′,
in a way that the resulting Bezier curve appears as parallel to the original curve in the sense
defined above.

In order to make the path at point ~A′ actually parallel to the orginal path at ~A, we require
~B′ − ~A′ to be parallel to ~B − ~A. From this we can derive an equation that expresses the fact
that ~B′ lies somewhere on the straight line that runs through point ~A′ and has the direction
~B − ~A, i.e.,

~B′ = ~A′ + µB(~B − ~A), (3)

and correspondingly
~C ′ = ~D′ + µC(~C − ~D) (4)

for point ~C ′. Here, µB and µC are two positive quantities, whose exact values are still to be
determined.

In order to compute µB and µC , we consider a third point on the curve. Using a well-
known algorithm that iteratively approximates a Bezier curve via straight line segments, we can
easily determine the coordinates of the point that—in the parameter equation f(t) of a Bezier
curve—corresponds to the parameter t = 1/2. It can be considered as a middle point of the
curve segment. In Figure 10, this point is named ~P6. It can be computed by computing some
intermediate points:

~P1 =
1
2

(~A+ ~B) (5)

~P2 =
1
2

(~B + ~C) (6)

~P3 =
1
2

(~C + ~D) (7)

~P4 =
1
2

(~P1 + ~P2) (8)

~P5 =
1
2

(~P2 + ~P3) (9)

and finally
~P6 =

1
2

(~P4 + ~P5) =
1
8

(~A+ 3 ~B + 3~C + ~D) (10)

Using the same geometrical considerations as in Eqs. 1 and 2, we can now compute a unit vector,
~n6, perpendicular to the curve at ~P6 and obtain

n6x =
P5y − P4y√

(P5x − P4x)2 + (P5y − P4y)2
(11)

n6y = − P5x − P4x√
(P5x − P4x)2 + (P5y − P4y)2

(12)

97

~P ′6 can now be computed as
~P ′6 = ~P6 + ~N6, (13)

where ~N6 = w
2 ~n6, i.e., the vector orthogonal to the curve at ~P6 with a length of half the

strokewidth w. As before, we have to require that the slope of the curve ~P6 equals the one at
~P ′6, i.e., with respect to Figure 10 we find

~P ′5 − ~P ′4 = ν
(
~P5 − ~P4

)
~P ′2 + ~P ′3

2
−
~P ′1 + ~P ′2

2
= ν

(
~P2 + ~P3

2
−
~P1 + ~P2

2

)
~C ′ + ~D′

2
−
~A′ + ~B′

2
= ν

(
~C + ~D

2
−
~A+ ~B

2

)
and hence finally

~C ′ + ~D′ − ~A′ − ~B′ = ν
(
~C + ~D − ~A− ~B

)
. (14)

We have thus expressed the slope condition at ~P6 in terms of the characteristic points of a Bezier
curve and a factor, ν, still to be determined (cf. Eqs. 3 and 4). On the way to Eq. 14, we made
use of the well-known geometrical relations Eqs. 5 – 9.

Based on the same considerations that led to Eq. 10, we can write the corresponding equation
for the point ~P ′6:

~P ′6 =
1
2

(~P ′4 + ~P ′5) =
1
8

(~A′ + 3 ~B′ + 3~C ′ + ~D′) (15)

Exploiting Eq. 13 and solving for ~C ′, we can reorganize Eq. 15:

~C ′ =
8(~N6 + ~P6)− ~A′ − ~D′

3
− ~B′ (16)

From this equation, we are able eliminate ~B′ by substituting the transformed slope condition
for point ~P ′6 (Eq. 14). We obtain

~C ′ =
8(~N6 + ~P6)− ~A′ − ~D′

3
+
[
ν
(
~C + ~D − ~A− ~B

)
− ~C ′ − ~D′ + ~A′

]
2 ~C ′ =

8(~N6 + ~P6)− ~A′ − ~D′

3
+ ~A′ − ~D′ + ν

(
~C + ~D − ~A− ~B

)
~C ′ =

4(~N6 + ~P6) + ~A′ − 2 ~D′

3︸ ︷︷ ︸
~lC

+
ν

2

(
~C + ~D − ~A− ~B

)
︸ ︷︷ ︸

~dC

. (17)

Here, for the sake of brevity, we introduced a location vector, ~lC , and a direction vector, ~dC ,
which together with the parameter ν define the point ~C ′.

Considering Eqs. 4 and 17, we finally found two independent relations for ~C ′, that linearly
depend on two quantities, µC and ν

2 . Therefore, by substituting the right hand sides of (4) and
(17), we obtain the following 2× 2 system of linear equations:[

(~C − ~D) ~dC
](µC

ν/2

)
=
(
~lC − ~D′

)
(18)

Formally, all vectors appearing in this equation are column vectors. The solution of the system
can be written as (

µC
ν/2

)
=
[

(~C − ~D) ~dC
]−1 (

~lC − ~D′
)
. (19)

98

Once ~C ′ has been computed, it is easy to compute ~B′, by making use of Eq. 16.
A few remarks about the approach described above are appropriate.

• It is also possible to first compute the point ~B′ and then use Eq. 16 to compute ~C ′.

• The numerical stability at the respective end of the curve determines the preference of
which point to compute first. A criterion for the numerical stability is the absolute value
of determinant of the 2× 2 matrix in Eq. 18.

• This determinant may become zero in which case the curve transforms into a straight line.
These cases must be treated extraordinarily.

• There are a number of further exceptional cases, e.g., if point ~C equals ~D. Then the slope
at this end of the curve is not enforced by point ~C.

• A good solution, that is, a parallel curve, will only result, if the set of assumptions discussed
previously holds. If the resulting curve does not appear parallel to the original curve, the
parallel curve cannot be approximated by a third order Bezier spline.

8.3 Connection of Path Segments and Prolongation

In order to actually obtain delimiting paths for character outlines, the parallel paths have to be
connected to a continuous path. This raises the problem of line joining. When connecting two
neighboring parallel path segments, we have to distinguish between two qualitatively different
situations.

1. Convex Corner
When tracing along two neighboring parallel path segments, we turn to the left and a
convex corner appears. In these cases, we prolongate the end of the first path and the
beginning of the second path using straight lines and compute an intersection between
these prolongation segments. The resulting lengths of both prolongation segments will be
positive.

2. Concave Corner
When tracing along two neighboring parallel path segments, we turn to the right and a
concave corner results. In these cases, the two neighboring parallel path segments intersect
by nature and actually would have to be trimmed to their intersection point. Trimming on
the other hand would make it impossible to feed the resulting curve in the standard format
into the rasterizer. We therefore use a trick that saves us computing an intersection and
recomputing the Bezier control points. From the ideal end point of the first parallel path
we insert a straight prolongation to the connection point of the original path segments
and a second straight prolongation segment from there to the starting point of the second
parallel path segment. Then, the area left of the path is ensured to be within the extents
that finally are to be filled with ink.

We will now explain this principle using the example shown in Figure 11. The interesting part
is in the middle right. The original path—shown in bold dashed style—steps into the figure in
the lower right as the end of a curve segment p1. At the following connection point, the path
strongly turns to the right so that a concave corner results and continues with a further curve
segment p2. This path is now to be surrounded in a symmetrical manner by one right and one
left path. For p1, we find the right path as a parallel curve segment above the original path. It
has been computed as described in the previous section. For p2, the right path is a parallel curve
segment located in an appropriate distance below p2. The two neighboring right path segments

99

Figure 11: A small excerpt at the middle right from the character “B” of ComputerModern
Roman. The ideal mathematical outline of the filled character is shown in thick dashed style.
Left and right path of the character’s outline representation are shown in medium solid style.
Prolongation is indicated by large dashes of medium thickness.

are disjoint because of the concavity of the resulting corner. Hence, rule 2 from above applies in
order to connect them using straight prolongation lines, in the figure shown in wide dashes of a
medium linewidth: From the end of right path 1, we prolongate to the point where the original
segments p1 and p2 join, and from there, a second prolongation to the beginning of right path 2
is inserted. The direction is indicated by arrows. Obviously, even the right path alone produces
a closed region in this case, but this does not cause problems here.

The left path runs into the direction opposite to the original path. By nature, the curvature
at the point under consideration now is convex. Hence, according to rule 1, the neighboring
left paths’ segments are prolongated to their common intersection point, respecting the ending
direction of left path 1 and the starting direction of left path 2.

The kind of corner at two neighboring parallel path segments p1 and p2 can be computed
analytically. Let ~T1 be the tangent vector at the end point of p1 and ~T2 be the tangent vector
at the starting point of p2. Assuming that both ~T1 and ~T2 are column vectors, we can use the
determinant of the square matrix constructed by these vectors to determine the corner type:

d =
∣∣∣ ~T1

~T2

∣∣∣ (20)

If d < 0, the corner type is concave whereas for d > 0, the corner type is convex. For the
special case d = 0, the slope at the joining point is continuous, so that effectively ~T1 and ~T2

linearly depend on each other. For those cases, prolongation is not required at all, because if

100

the neighboring segments in the original path join, neighboring segments in the left and right
path will do so too.

The kind of joining lines described above is known as mitered line joining. t1lib does not
impose a limit on the width of mitered corners, so that the operation t1lib implements is
identical to what PostScript does by default, i.e., using a line join type of 0 and an infinite miter
limit.

101

Function Index

T1_AAFillOutline(), 66
T1_AAGetBitsPerPixel(), 58
T1_AAGetGrayValues(), 59
T1_AAHGetGrayValues(), 59
T1_AAHSetGrayValues(), 59
T1_AANGetGrayValues(), 59
T1_AANSetGrayValues(), 59
T1_AASetBitsPerPixel(), 58
T1_AASetChar(), 57
T1_AASetCharX(), 84
T1_AASetGrayValues(), 59
T1_AASetLevel(), 58
T1_AASetRect(), 57
T1_AASetRectX(), 85
T1_AASetSmartLimits(), 60
T1_AASetSmartMode(), 60
T1_AASetString(), 57
T1_AASetStringX(), 85
T1_AbsolutePath(), 66
T1_AddFont(), 28
T1_AddFontDataBase(), 27
T1_AddFontDataBaseXLFD(), 27
T1_AddToFileSearchPath(), 28
T1_CheckEndian(), 82
T1_CheckForFontID(), 49
T1_CheckForInit(), 49
T1_ClearStrokeFlag(), 56
T1_CloseLib(), 42
T1_ConcatGlyphs(), 36
T1_ConcatOutlines(), 65
T1_CopyFont(), 69
T1_CopyGlyph(), 37
T1_CopyOutline(), 65
T1_DeleteAllSizes(), 41
T1_DeleteEncoding(), 39
T1_DeleteFont(), 41
T1_DeleteSize(), 40
T1_DumpGlyph(), 82
T1_DumpPath(), 82
T1_ExtendFont(), 50
T1_ExtendHMatrix(), 53
T1_ExtendVMatrix(), 54
T1_FillOutline(), 65
T1_FreeCompCharData(), 42
T1_FreeGlyph(), 41
T1_FreeOutline(), 65
T1_GetAFMFilePath(), 49

T1_GetAfmFileName(), 30
T1_GetAllCharNames(), 48
T1_GetBitmapPad(), 24
T1_GetCharBBox(), 45
T1_GetCharName(), 48
T1_GetCharOutline(), 64
T1_GetCharString(), 75
T1_GetCharWidth(), 45
T1_GetCompCharData(), 77
T1_GetCompCharDataByIndex(), 77
T1_GetEncodingIndex(), 48
T1_GetEncodingIndices(), 48
T1_GetEncodingScheme(), 40
T1_GetExtend(), 51, 52
T1_GetFamilyName(), 44
T1_GetFileSearchPath(), 28
T1_GetFontBBox(), 44
T1_GetFontFileName(), 49
T1_GetFontFilePath(), 49
T1_GetFontName(), 44
T1_GetFullName(), 44
T1_GetIsFixedPitch(), 44
T1_GetItalicAngle(), 44
T1_GetKerning(), 47
T1_GetLenIV(), 75
T1_GetLibIdent(), 50
T1_GetLinePosition(), 43
T1_GetLineThickness(), 43
T1_GetMetricsInfo(), 46
T1_GetMoveOutline(), 65
T1_GetNoCompositeChars(), 76
T1_GetNoFonts(), 49
T1_GetNoKernPairs(), 49
T1_GetNotice(), 45
T1_GetStringBBox(), 46
T1_GetStringOutline(), 65
T1_GetStringWidth(), 46
T1_GetStrokeMode(), 56
T1_GetStrokeWidth(), 56
T1_GetTransform(), 52
T1_GetUnderlinePosition(), 45
T1_GetUnderlineThickness(), 45
T1_GetVersion(), 45
T1_GetWeight(), 44
T1_InitLib(), 25
T1_IsInternalChar(), 77
T1_LoadEncoding(), 39

102

T1_LoadFont(), 37
T1_LogicalPositionX(), 84
T1_ManipulatePath(), 67
T1_MirrorHMatrix(), 53
T1_MirrorVMatrix(), 53
T1_NEARESTPOINT(), 63
T1_PrintLog(), 31
T1_QueryCompositeChar(), 76
T1_QueryLigs(), 47
T1_QueryX11Support(), 23
T1_ReencodeFont(), 39
T1_RelativePath(), 67
T1_RotateMatrix(), 54
T1_ScaleOutline(), 65
T1_SetAfmFileName(), 30
T1_SetBitmapPad(), 24
T1_SetChar(), 33
T1_SetCharX(), 84
T1_SetDefaultEncoding(), 40
T1_SetDeviceResolutions(), 24
T1_SetFileSearchPath(), 27
T1_SetFontDataBase(), 27
T1_SetFontDataBaseXLFD(), 27
T1_SetLinePosition(), 43
T1_SetLineThickness(), 43
T1_SetLogLevel(), 31
T1_SetRasterFlags(), 82
T1_SetRect(), 35
T1_SetRectX(), 84
T1_SetString(), 34
T1_SetStringX(), 84
T1_SetStrokeFlag(), 55
T1_SetStrokeWidth(), 56
T1_SetX11Params(), 84
T1_ShearHMatrix(), 54
T1_ShearVMatrix(), 54
T1_SlantFont(), 50
T1_StrError(), 81
T1_StrokeFont(), 55
T1_SubsetFont(), 74
T1_TOPATHPOINT(), 63
T1_TransformFont(), 51
T1_TransformMatrix(), 54
T1_WriteAFMFallbackFile(), 71
T1_XImageFromGlyph(), 86

103

	Introduction
	What Does t1lib Do?
	Copyrights and Credits
	Motivation
	How to Reach the Author/How to Get t1lib

	Getting Started
	Building, Installing and Removing the t1lib-Package
	Notes on Using GNU libtool
	Runtime-Setup
	Searchpath and Environment Setup
	The t1lib Configuration File
	The Font Database File
	Alternative Runtime Setups

	A Very Simple Programming Example

	The Program xglyph
	Common Parameter Dialogs and Toggle Buttons
	Buttons that Influence the X11 Rastering Functions
	Buttons that Generate Actions
	The Message Window
	The Output Window
	xglyph Commandline Parameters
	Fonts Included in the t1lib-Package
	Some General Remarks on xglyph

	The Program type1afm
	Using t1lib
	Compiling and Linking t1lib-Programs
	Querying and Setting Fundamental Configuration Parameters of t1lib
	Initialization of t1lib and Related Things
	Standard Initialization
	Fine Control over Font Databases and File Search Paths
	Adding Fonts to the Database
	Summary of Search Path Handling
	Bypassing the t1lib File Search Machinery

	The t1lib-Logfile
	Generating Bitmaps
	Loading Fonts Explicitly
	Functions for Encoding Handling
	Deleting Data
	Underlining, Overlining and Overstriking
	Common Information on Fonts and Characters
	Information from FontInfo-Dictionary
	Metric Information on Glyphs
	Character-Encoding Relation
	Administrative Information

	Transformation of Fonts
	Fontlevel Transformations
	Transformation at Rastering Time
	t1lib and PostScript: Notes on Transformation Matrices

	Stroking of Character Outlines
	Antialiasing
	General Description
	Setting Operating Parameters
	Smart Antialiasing
	Caching of Antialiased Character Glyphs

	Interface to Outlines
	Outline Format
	Using Outlines
	Manipulation of Outlines

	Logical Fonts
	Missing or Invalid AFM Files
	Remarks on AFM Files
	Generation of AFM Information
	Writing AFM Files

	Font Subsetting
	Font File Organization and Subsetting
	Functions for Subsetting
	Further Functions for Subsetting

	Composite Characters
	General remarks
	Accessing Composite Character Data
	Transparent Handling of Composite Characters and User Extensions
	Caveats

	Error Handling
	Type 1 Font File Scan-Errors
	Path Generation Errors
	t1lib-Errors

	Other Useful Functions

	The X11-Interface
	Why a Special X11-Interface?
	Initialization of the X11-Interface
	Rastering Functions
	Creating XPM-Files from t1lib-Glyphs
	Limits of the X11 Interface

	Internals (incomplete)
	Level 0: Global Data
	Level 1: Size-Independent Font Data
	Level 2: Size-Dependent Font Data

	Stroked Characters
	Approach
	Computation of Parallel Paths
	Connection of Path Segments and Prolongation

	Function Index

