Stow 2.3.1

Managing the installation of software packages

Bob Glickstein, Zanshin Software, Inc.
Kahlil Hodgson, RMIT University, Australia.
Guillaume Morin

Adam Spiers

This manual describes GNU Stow version 2.3.1 (28 July 2019), a program for managing
farms of symbolic links.

Software and documentation is copyrighted by the following:

(© 1993, 1994, 1995, 1996 Bob Glickstein <bobg+stow@zanshin.com>
(© 2000, 2001 Guillaume Morin <gmorin@gnu.org>

(© 2007 Kahlil (Kal) Hodgson <kahlil@internode.on.net>

(© 2011 Adam Spiers <stow@adamspiers.org>

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided also that the section enti-
tled “GNU General Public License” is included with the modified manual, and
provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except
that this permission notice may be stated in a translation approved by the Free
Software Foundation.

Table of Contents

1 Introduction............. 1
2 Terminology............... 3
3 Invoking Stow............. 4
4 1Ignore Lists 7
4.1 Motivation For Ignore Lists............... .o i .. 7
4.2 Types And Syntax Of Ignore Lists............ 7
4.3 Justification For Yet Another Set Of Ignore Files............... 8
5 Installing Packages 10
5.1 Tree folding.o 10
5.2 Tree unfoldingo 10
5.3 Ownership. ... 11
5.4 Conflicts during installation......... 11
6 Deleting Packages 12
6.1 Refolding “foldable” trees. i 12
7 Conflicts........ 13
7.1 Deferred Operationc.ooiiiiiiiiiiiiiii .. 13
8 Mixing Operations 14
9 Multiple Stow Directories 15
10 Target Maintenance.......................... 16
11 Resource Files................................ 17
12 Compile-time vs Install-time................ 18
12.1 Advice on changing compilation and installation parameters.. 18
12.2° GNU Emacso 19
12.3 Other FSF Software........ ... o i 19
12.4 Cygnus SOftwaret 19

12.5 Perl and Perl 5 Modules 20

13 Bootstrapping 22
14 Reporting Bugs 23
15 Known Bugs................. 24
GNU General Public License..................... 25

ii

Chapter 1: Introduction 1

1 Introduction

GNU Stow is a symlink farm manager which takes distinct sets of software and/or data
located in separate directories on the filesystem, and makes them all appear to be installed
in a single directory tree.

Originally Stow was born to address the need to administer, upgrade, install, and remove
files in independent software packages without confusing them with other files sharing the
same file system space. For instance, many years ago it used to be common to compile
programs such as Perl and Emacs from source and install them in ‘/usr/local’. When one
does so, one winds up with the following files! in ‘/usr/local/man/mani’:

a2p.1
ctags.1
emacs.1
etags.1
h2ph.1
perl.1
s2p.1

Now suppose it’s time to uninstall Perl. Which man pages get removed? Obviously ‘perl.1’
is one of them, but it should not be the administrator’s responsibility to memorize the
ownership of individual files by separate packages.

The approach used by Stow is to install each package into its own tree, then use symbolic
links to make it appear as though the files are installed in the common tree. Administration
can be performed in the package’s private tree in isolation from clutter from other packages.
Stow can then be used to update the symbolic links. The structure of each private tree
should reflect the desired structure in the common tree; i.e. (in the typical case) there should
be a ‘bin’ directory containing executables, a ‘man/man1’ directory containing section 1 man
pages, and so on.

While this is useful for keeping track of system-wide and per-user installations of software
built from source, in more recent times software packages are often managed by more
sophisticated package management software such as rpm, dpkg, and Nix / GNU Guix, or
language-native package managers such as Ruby’s gem, Python’s pip, Javascript’s npm, and
SO On.

However Stow is still used not only for software package management, but also for other
purposes, such as facilitating a more controlled approach to management of configuration
files in the user’s home directory?, especially when coupled with version control systems?.

Stow was inspired by Carnegie Mellon’s Depot program, but is substantially simpler and
safer. Whereas Depot required database files to keep things in sync, Stow stores no extra
state between runs, so there’s no danger (as there was in Depot) of mangling directories when
file hierarchies don’t match the database. Also unlike Depot, Stow will never delete any
files, directories, or links that appear in a Stow directory (e.g., ‘/usr/local/stow/emacs’),
so it’s always possible to rebuild the target tree (e.g., ‘/usr/local’).

1 As of Perl 4.036 and Emacs 19.22. These are now ancient releases but the example still holds valid.
2 http://brandon.invergo.net/news/2012-05-26-using-gnu-stow-to-manage-your-dotfiles.html
3 http://lists.gnu.org/archive/html/info-stow/2011-12/msg00000.html

https://en.wikipedia.org/wiki/Rpm_(software)
https://en.wikipedia.org/wiki/Dpkg
https://en.wikipedia.org/wiki/Nix_package_manager
https://en.wikipedia.org/wiki/GNU_Guix
https://en.wikipedia.org/wiki/RubyGems
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://en.wikipedia.org/wiki/Npm_(software)
http://brandon.invergo.net/news/2012-05-26-using-gnu-stow-to-manage-your-dotfiles.html
http://lists.gnu.org/archive/html/info-stow/2011-12/msg00000.html

Chapter 1: Introduction 2

Stow is implemented as a combination of a Perl script providing a CLI interface, and a
backend Perl module which does most of the work.

For information about the latest version of Stow, you can refer to
http://www.gnu.org/software/stow/.

http://www.gnu.org/software/stow/

Chapter 2: Terminology 3

2 Terminology

A package is a related collection of files and directories that you wish to administer as
a unit — e.g., Perl or Emacs — and that needs to be installed in a particular directory
structure — e.g., with ‘bin’, ‘1ib’, and ‘man’ subdirectories.

A target directory is the root of a tree in which one or more packages wish to appear
to be installed. A common, but by no means the only such location is ‘/usr/local’. The
examples in this manual will use ‘/usr/local’ as the target directory.

A stow directory is the root of a tree containing separate packages in private subtrees.
When Stow runs, it uses the current directory as the default stow directory. The examples
in this manual will use ‘/usr/local/stow’ as the stow directory, so that individual packages
will be, for example, ‘/usr/local/stow/perl’ and ‘/usr/local/stow/emacs’.

An installation image is the layout of files and directories required by a package, relative
to the target directory. Thus, the installation image for Perl includes: a ‘bin’ directory
containing ‘perl’ and ‘a2p’ (among others); an ‘info’ directory containing Texinfo doc-
umentation; a ‘1ib/perl’ directory containing Perl libraries; and a ‘man/manl’ directory
containing man pages.

A package directory is the root of a tree containing the installation image for a partic-
ular package. Each package directory must reside in a stow directory — e.g., the package
directory ‘/usr/local/stow/perl’ must reside in the stow directory ‘/usr/local/stow’.
The name of a package is the name of its directory within the stow directory — e.g., ‘perl’.

Thus, the Perl executable might reside in ‘/usr/local/stow/perl/bin/perl’,
where ‘/usr/local’ is the target directory, ‘/usr/local/stow’ is the stow directory,
‘/usr/local/stow/perl’ is the package directory, and ‘bin/perl’ within is part of the
installation image.

A symlink is a symbolic link. A symlink can be relative or absolute. An absolute symlink
names a full path; that is, one starting from ‘/’. A relative symlink names a relative path;
that is, one not starting from ‘/’. The target of a relative symlink is computed starting
from the symlink’s own directory. Stow only creates relative symlinks.

Chapter 3: Invoking Stow 4

3 Invoking Stow

The syntax of the stow command is:
stow [options] [action flag] package ...

Each package is the name of a package (e.g., ‘perl’) in the stow directory that we wish to
install into (or delete from) the target directory. The default action is to install the given
packages, although alternate actions may be specified by preceding the package name(s)
with an action flag.

The following options are supported:

‘-d dir’

‘--dir=dir’
Set the stow directory to dir. Defaults to the value of the environment variable
STOW_DIR if set, or the current directory otherwise.

‘-t dir’

‘-—target=dir’
Set the target directory to dir instead of the parent of the stow directory.
Defaults to the parent of the stow directory, so it is typical to execute stow
from the directory ‘/usr/local/stow’.

‘-—ignore=regexp’
This (repeatable) option lets you suppress acting on files that match the given
Perl regular expression. For example, using the options

—-—ignore=’.*\.orig’ --ignore=’.*\.dist’
will cause stow to ignore files ending in ‘.orig’ or ‘.dist’.
Note that the regular expression is anchored to the end of the filename, because
this is what you will want to do most of the time.
Also note that by default Stow automatically ignores a “sensible” built-in list of

files and directories such as ‘CVS’, editor backup files, and so on. See Chapter 4
[Ignore Lists|, page 7, for more details.

‘-—defer=regexp’
This (repeatable) option avoids stowing a file matching the given regular ex-
pression, if that file is already stowed by another package. This is effectively
the opposite of ‘--override’.

(N.B. the name ‘--defer’ was chosen in the sense that the package currently
being stowed is treated with lower precedence than any already installed pack-
age, not in the sense that the operation is being postponed to be run at a
later point in time; do not confuse this nomenclature with the wording used in
[Deferred Operation|, page 13.)

For example, the following options
--defer=man --defer=info
will cause stow to skip over pre-existing man and info pages.

Equivalently, you could use ‘--defer=’man|info’’ since the argument is just
a Perl regular expression.

Chapter 3: Invoking Stow 5

Note that the regular expression is anchored to the beginning of the path relative
to the target directory, because this is what you will want to do most of the
time.

‘-—override=regexp’

This (repeatable) option forces any file matching the regular expression to be
stowed, even if the file is already stowed to another package. For example, the
following options

—--override=man --override=info

will permit stow to overwrite links that point to pre-existing man and info pages
that are owned by stow and would otherwise cause a conflict.

The regular expression is anchored to the beginning of the path relative to the
target directory, because this is what you will want to do most of the time.

‘-—no-folding’

‘-—adopt’

‘—n’

6__n0’

This disables any further tree folding (see [tree folding], page 10) or refolding
(see [tree refolding], page 12). If a new subdirectory is encountered whilst
stowing a new package, the subdirectory is created within the target, and its
contents are symlinked, rather than just creating a symlink for the directory. If
removal of symlinks whilst unstowing a package causes a subtree to be foldable
(i.e. only containing symlinks to a single package), that subtree will not be
removed and replaced with a symlink.

Warning! This behaviour is specifically intended to alter the contents of your
stow directory. If you do not want that, this option is not for you.

When stowing, if a target is encountered which already exists but is a plain
file (and hence not owned by any existing stow package), then normally Stow
will register this as a conflict and refuse to proceed. This option changes that
behaviour so that the file is moved to the same relative place within the pack-
age’s installation image within the stow directory, and then stowing proceeds
as before. So effectively, the file becomes adopted by the stow package, without
its contents changing.

This is particularly useful when the stow package is under the control of a
version control system, because it allows files in the target tree, with potentially
different contents to the equivalent versions in the stow package’s installation
image, to be adopted into the package, then compared by running something
like ‘git diff ...’ inside the stow package, and finally either kept (e.g. via
‘git commit ...’) or discarded (‘git checkout HEAD ...’).

‘——simulate’

Do not perform any operations that modify the file system; in combination with
‘=v’ can be used to merely show what would happen.

Chapter 3: Invoking Stow 6

g

‘——verbose[=n]’

L_p7
‘~-compat’

6_V7
‘——version’

(_h7
‘-=help’

Send verbose output to standard error describing what Stow is doing. Verbosity
levels are from 0 to 5; 0 is the default. Using ‘-v’ or ‘--verbose’ increases the
verbosity by one; using ‘~-verbose=n’ sets it to n.

Scan the whole target tree when unstowing. By default, only directories speci-
fied in the installation image are scanned during an unstow operation. Scanning
the whole tree can be prohibitive if your target tree is very large. This option
restores the legacy behaviour; however, the ‘~-badlinks’ option to the chkstow
utility may be a better way of ensuring that your installation does not have any
dangling symlinks (see Chapter 10 [Target Maintenance|, page 16).

Show Stow version number, and exit.

Show Stow command syntax, and exit.

The following action flags are supported:

(_D7
‘——delete’

4_R7
‘——restow’

4_S7

‘——stow’

Delete (unstow) the package name(s) that follow this option from the target
directory. This option may be repeated any number of times.

Restow (first unstow, then stow again) the package names that follow this
option. This is useful for pruning obsolete symlinks from the target tree after
updating the software in a package. This option may be repeated any number
of times.

explictly stow the package name(s) that follow this option. May be omitted if
you are not using the ‘-D’ or ‘~R’ options in the same invocation. See Chapter 8
[Mixing Operations], page 14, for details of when you might like to use this
feature. This option may be repeated any number of times.

Chapter 4: Ignore Lists 7

4 Ignore Lists

4.1 Motivation For Ignore Lists

In many situations, there will exist files under the package directories which it would be
undesirable to stow into the target directory. For example, files related version control such
as ‘.gitignore’, ‘CVS’, ‘“*,v’ (RCS files) should typically not have symlinks from the target
tree pointing to them. Also there may be files or directories relating to the build of the
package which are not needed at run-time.

In these cases, it can be rather cumbersome to specify a ‘~-ignore’ parameter for each
file or directory to be ignored. This could be worked around by ensuring the existence
of ‘"/.stowrc’ containing multiple ‘--ignore’ lines, or if a different set of files/directories
should be ignored depending on which stow package is involved, a ‘. stowrc’ file for each stow
package, but this would require the user to ensure that they were in the correct directory
before invoking stow, which would be tedious and error-prone. Furthermore, since Stow
shifts parameters from ‘.stowrc’ onto ARGV at run-time, it could clutter up the process
table with excessively long parameter lists, or even worse, exceed the operating system’s
limit for process arguments.

Therefore in addition to ‘--ignore’ parameters, Stow provides a way to specify lists of
files and directories to ignore.

4.2 Types And Syntax Of Ignore Lists

3

If you put Perl regular expressions, one per line, in a ‘.stow-local-ignore’ file within
any top level package directory, in which case any file or directory within that package
matching any of these regular expressions will be ignored. In the absence of this package-
specific ignore list, Stow will instead use the contents of ‘~/.stow-global-ignore’, if it
exists. If neither the package-local or global ignore list exist, Stow will use its own built-in
default ignore list, which serves as a useful example of the format of these ignore list files:

Comments and blank lines are allowed.

RCS
+,v

CVs
\.\#.+ # CVS conflict files / emacs lock files
\.cvsignore

\.svn
_darcs
\.hg

\.git
\.gitignore

.+ # emacs backup files

Chapter 4: Ignore Lists 8

\#. x\# # emacs autosave files

~/README. *
~/LICENSE. *
~/COPYING

Stow first iterates through the chosen ignore list (built-in, global, or package-local) as
per above, stripping out comments (if you want to include the ‘4’ symbol in a regular
expression, escape it with a blackslash) and blank lines, placing each regular expressions
into one of two sets depending on whether it contains the ‘/’ forward slash symbol.

Then in order to determine whether a file or directory should be ignored:

1. Stow calculates its path relative to the top-level package directory, prefixing that with
‘/’. If any of the regular expressions containing a ‘/’ ezactly' match a subpath? of this
relative path, then the file or directory will be ignored.

2. If none of the regular expressions containing a ‘/’ match in the manner described above,
Stow checks whether the basename? of the file or directory matches eractly against the
remaining regular expressions which do not contain a ‘/’, and if so, ignores the file or
directory.

3. Otherwise, the file or directory is not ignored.

For example, if a file ‘bazqux’ is in the ‘foo/bar’ subdirectory of the package directory,
Stow would use ‘/foo/bar/bazqux’ as the text for matching against regular expressions
which contain ‘/’, and ‘bazqux’ as the text for matching against regular expressions which
don’t contain ‘/’. Then regular expressions ‘bazqux’, ‘baz.*’, ‘.*qux’, ‘bar/.*x’, and
‘~/foo/.*qux’ would all match (causing the file to be ignored), whereas ‘bar’, ‘baz’, ‘qux’,
and ‘o/bar/b’ would not (although ‘bar’ would cause its parent directory to be ignored and
prevent Stow from recursing into that anyway, in which case the file ‘bazqux’ would not
even be considered for stowing).

As a special exception to the above algorithm, any ‘.stow-local-ignore’ present in the
top-level package directory is always ignored, regardless of the contents of any ignore list,
because this file serves no purpose outside the stow directory.

4.3 Justification For Yet Another Set Of Ignore Files

The reader may note that this format is very similar to existing ignore list file formats,
such as those for cvs, git, rsync etc., and wonder if another set of ignore lists is justified.
However there are good reasons why Stow does not simply check for the presence of say,
‘.cvsignore’, and use that if it exists. Firstly, there is no guarantee that a stow package
would contain any version control meta-data, or permit introducing this if it didn’t already
exist,.

1 Exact matching means the regular expression is anchored at the beginning and end, in contrast to
unanchored regular expressions which will match a substring.

2 In this context, “subpath” means a contiguous subset of path segments; e.g for the relative
path ‘one/two/three’, there are six valid subpaths: ‘one’, ‘two’, ‘three’, ‘one/two’, ‘two/three’,

‘one/two/three’.

3 The “basename” is the name of the file or directory itself, excluding any directory path prefix - as
returned by the basename command.

Chapter 4: Ignore Lists 9

Secondly even if it did, version control system ignore lists generally reflect build-time
ignores rather than install-time, and there may be some intermediate or temporary files
on those ignore lists generated during development or at build-time which it would be
inappropriate to stow, even though many files generated at build-time (binaries, libraries,
documentation etc.) certainly do need to be stowed. Similarly, if a file is not in the version
control system’s ignore list, there is no way of knowing whether the file is intended for end
use, let alone whether the version control system is tracking it or not.

Therefore it seems clear that ignore lists provided by version control systems do not

provide sufficient information for Stow to determine which files and directories to stow, and
so it makes sense for Stow to support independent ignore lists.

Chapter 5: Installing Packages 10

5 Installing Packages

The default action of Stow is to install a package. This means creating symlinks in the
target tree that point into the package tree. Stow attempts to do this with as few symlinks
as possible; in other words, if Stow can create a single symlink that points to an entire
subtree within the package tree, it will choose to do that rather than create a directory in
the target tree and populate it with symlinks.

5.1 Tree folding

For example, suppose that no packages have yet been installed in ‘/usr/local’; it’s com-
pletely empty (except for the ‘stow’ subdirectory, of course). Now suppose the Perl package
is installed. Recall that it includes the following directories in its installation image: ‘bin’;
‘info’; ‘1ib/perl’; ‘man/manl’. Rather than creating the directory ‘/usr/local/bin’ and
populating it with symlinks to ‘../stow/perl/bin/perl’ and ‘../stow/perl/bin/a2p’
(and so on), Stow will create a single symlink, ‘/usr/local/bin’, which points to
‘stow/perl/bin’. In this way, it still works to refer to ‘/usr/local/bin/perl’ and
‘/usr/local/bin/a2p’, and fewer symlinks have been created. This is called tree folding,
since an entire subtree is “folded” into a single symlink.

To complete this example, Stow will also create the symlink ‘/usr/local/info’ pointing
to ‘stow/perl/info’; the symlink ‘/usr/local/1ib’ pointing to ‘stow/perl/1ib’; and the
symlink ‘/usr/local/man’ pointing to ‘stow/perl/man’.

Now suppose that instead of installing the Perl package into an empty target
tree, the target tree is not empty to begin with. Instead, it contains several files and
directories installed under a different system-administration philosophy. In particular,
‘/usr/local/bin’ already exists and is a directory, as are ‘/usr/local/lib’ and
‘/usr/local/man/manl’. In this case, Stow will descend into ‘/usr/local/bin’ and create
symlinks to ‘../stow/perl/bin/perl’ and ‘../stow/perl/bin/a2p’ (etc.), and it will
descend into ‘/usr/local/lib’ and create the tree-folding symlink ‘perl’ pointing to
‘../stow/perl/lib/perl’, and so on. As a rule, Stow only descends as far as necessary
into the target tree when it can create a tree-folding symlink. However, this behaviour can
be changed via the ‘--no-folding’ option; see Chapter 3 [Invoking Stow], page 4.

5.2 Tree unfolding

The time often comes when a tree-folding symlink has to be undone because another pack-
age uses one or more of the folded subdirectories in its installation image. This operation
is called splitting open or unfolding a folded tree. It involves removing the original symlink
from the target tree, creating a true directory in its place, and then populating the new
directory with symlinks to the newly-installed package and to the old package that used the
old symlink. For example, suppose that after installing Perl into an empty ‘/usr/local’,
we wish to install Emacs. Emacs’s installation image includes a ‘bin’ directory contain-
ing the ‘emacs’ and ‘etags’ executables, among others. Stow must make these files ap-
pear to be installed in ‘/usr/local/bin’, but presently ‘/usr/local/bin’ is a symlink to
‘stow/perl/bin’. Stow therefore takes the following steps: the symlink ‘/usr/local/bin’is
deleted; the directory ‘/usr/local/bin’ is created; links are made from ‘/usr/local/bin’
to ‘../stow/emacs/bin/emacs’ and ‘. ./stow/emacs/bin/etags’; and links are made from
‘/usr/local/bin’ to ‘../stow/perl/bin/perl’ and ‘../stow/perl/bin/a2p’.

Chapter 5: Installing Packages 11

5.3 Ownership

When splitting open a folded tree, Stow makes sure that the symlink it is about to remove
points inside a valid package in the current stow directory. Stow will never delete anything
that it doesn’t own. Stow “owns” everything living in the target tree that points into a
package in the stow directory. Anything Stow owns, it can recompute if lost: symlinks
that point into a package in the stow directory, or directories that only contain symlinks
that stow “owns”. Note that by this definition, Stow doesn’t “own” anything in the stow
directory or in any of the packages.

5.4 Conflicts during installation

If Stow needs to create a directory or a symlink in the target tree and it cannot because that
name is already in use and is not owned by Stow, then a conflict has arisen. See Chapter 7
[Conflicts], page 13.

Chapter 6: Deleting Packages 12

6 Deleting Packages

When the ‘-D’ option is given, the action of Stow is to delete a package from the target
tree. Note that Stow will not delete anything it doesn’t “own”. Deleting a package does
not mean removing it from the stow directory or discarding the package tree.

To delete a package, Stow recursively scans the target tree, skipping over any direc-
tory that is not included in the installation image.! For example, if the target directory
is ‘/usr/local’ and the installation image for the package being deleted has only a ‘bin’
directory and a ‘man’ directory at the top level, then we only scan ‘/usr/local/bin’ and
‘/usr/local/man’, and not ‘/usr/local/lib’ or ‘/usr/local/share’, or for that mat-
ter ‘/usr/local/stow’. Any symlink it finds that points into the package being deleted
is removed. Any directory that contained only symlinks to the package being deleted is
removed.

6.1 Refolding “foldable” trees.

After removing symlinks and empty subdirectories, any directory that contains only sym-
links to a single other package is considered to be a previously “folded” tree that was “split
open.” Stow will refold the tree by removing the symlinks to the surviving package, remov-
ing the directory, then linking the directory back to the surviving package. However, this
behaviour can be prevented via the ‘--no-folding’ option; see Chapter 3 [Invoking Stow],
page 4.

1 This approach was introduced in version 2 of GNU Stow. Previously, the whole target tree was scanned
and stow directories were explicitly omitted. This became problematic when dealing with very large
installations. The only situation where this is useful is if you accidentally delete a directory in the
package tree, leaving you with a whole bunch of dangling links. Note that you can enable the old
approach with the ‘-p’ option. Alternatively, you can use the ‘--badlinks’ option get stow to search for
dangling links in your target tree and remove the offenders manually.

Chapter 7: Conflicts 13

7 Conflicts

If, during installation, a file or symlink exists in the target tree and has the same name as
something Stow needs to create, and if the existing name is not a folded tree that can be
split open, then a conflict has arisen. A conflict also occurs if a directory exists where Stow
needs to place a symlink to a non-directory. On the other hand, if the existing name is
merely a symlink that already points where Stow needs it to, then no conflict has occurred.
(Thus it is harmless to install a package that has already been installed.)

For complex packages, scanning the stow and target trees in tandem, and deciding
whether to make directories or links, split-open or fold directories, can actually take a long
time (a number of seconds). Moreover, an accurate analysis of potential conflicts requires
us to take into account all of these operations.

7.1 Deferred Operation

Since version 2.0, Stow now adopts a two-phase algorithm, first scanning for any potential
conflicts before any stowing or unstowing operations are performed. If any conflicts are
found, they are displayed and then Stow terminates without making any modifications to
the filesystem. This means that there is much less risk of a package being partially stowed
or unstowed due to conflicts.

Prior to version 2.0, if a conflict was discovered, the stow or unstow operation could be
aborted mid-flow, leaving the target tree in an inconsistent state.

Chapter 8: Mixing Operations 14

8 Mixing Operations

Since version 2.0, multiple distinct actions can be specified in a single invocation of GNU
Stow. For example, to update an installation of Emacs from version 21.3 to 21.4a you can
now do the following:

stow -D emacs-21.3 -S emacs-21.4a
which will replace emacs-21.3 with emacs-21.4a using a single invocation.

This is much faster and cleaner than performing two separate invocations of stow, be-
cause redundant folding/unfolding operations can be factored out. In addition, all the oper-
ations are calculated and merged before being executed (see [Deferred Operation], page 13),
so the amount of of time in which GNU Emacs is unavailable is minimised.

You can mix and match any number of actions, for example,
stow -S pkgl pkg2 -D pkg3 pkgé4 -S pkgb -R pkgb
will unstow pkg3, pkg4 and pkg6, then stow pkgl, pkg2, pkgb and pkg6.

Chapter 9: Multiple Stow Directories 15

9 Multiple Stow Directories

If there are two or more system administrators who wish to maintain software separately, or
if there is any other reason to want two or more stow directories, it can be done by creating a
file named ‘. stow’ in each stow directory. The presence of ‘/usr/local/foo/.stow’ informs
Stow that, though ‘foo’ is not the current stow directory, even if it is a subdirectory of the
target directory, nevertheless it is a stow directory and as such Stow doesn’t “own” anything
in it (see Chapter 5 [Installing Packages], page 10). This will protect the contents of ‘foo’
from a ‘stow -D’, for instance.

When multiple stow directories share a target tree, if a tree-folding symlink is encoun-
tered and needs to be split open during an installation, as long as the top-level stow directory
into which the existing symlink points contains ‘.stow’, Stow knows how to split open the
tree in the correct manner.

Chapter 10: Target Maintenance 16

10 Target Maintenance

From time to time you will need to clean up your target tree. Since version 2, Stow provides
a new utility chkstow to help with this. It includes three operational modes which performs
checks that would generally be too expensive to be performed during normal stow execution.

The syntax of the chkstow command is:
chkstow [options]

The following options are supported:

‘~t dir’

‘-—target=dir’
Set the target directory to dir instead of the parent of the stow directory.
Defaults to the parent of the stow directory, so it is typical to execute stow
from the directory ‘/usr/local/stow’.

L_b7

‘~-badlinks’
Checks target directory for bogus symbolic links. That is, links that point to
non-existent files.

gy’

‘--aliens’
Checks for files in the target directory that are not symbolic links. The target
directory should be managed by stow alone, except for directories that contain
a ‘.stow’ file.

-1’

‘--1list’ Will display the target package for every symbolic link in the stow target di-
rectory.

Chapter 11: Resource Files 17

11 Resource Files

Default command line options may be set in ‘.stowrc’ (current directory) or ‘~/.stowrc’
(home directory). These are parsed in that order, and are appended together if they both
exist. The effect of the options in the resource file is similar to simply prepending the
options to the command line. This feature can be used for some interesting effects.

For example, suppose your site uses more than one stow directory, perhaps in order
to share around responsibilities with a number of systems administrators. One of the
administrators might have the following in their ‘~/.stowrc’ file:

--dir=/usr/local/stow2
--target=/usr/local
--ignore=’""’
--ignore=’"CVS’
so that the stow command will default to operating on the ‘/usr/local/stow2’ direc-
tory, with ‘/usr/local’ as the target, and ignoring vi backup files and CVS directories.

If you had a stow directory ‘/usr/local/stow/perl-extras’ that was only used for Perl
modules, then you might place the following in ‘/usr/local/stow/perl-extras/.stowrc’

--dir=/usr/local/stow/perl-extras

-—-target=/usr/local

--override=bin

—--override=man

--ignore=’perllocal\.pod’

--ignore=’\.packlist’

--ignore=’\.bs’

so that when you are in the ‘/usr/local/stow/perl-extras’ directory, stow will regard

any subdirectories as stow packages, with ‘/usr/local’ as the target (rather than the
immediate parent directory ‘/usr/local/stow’), overriding any pre-existing links to bin
files or man pages, and ignoring some cruft that gets installed by default.

If an option is provided both on the command line and in a resource file, the command
line option takes precedence. For options that provide a single value, such as --target
or --dir, the command line option will overwrite any options in the resource file. For
options that can be given more than once, -—ignore for example, command line options
and resource options are appended together.

For options that take a file path, environment variables and the tilde character (7) are
expanded. An environment variable can be given in either the $VAR or ${VAR} form. To
prevent expansion, escape the $ or ~ with a backslash.

The options -D, -S, and -R are ignored in resource files. This is also true of any package
names given in the resource file.

Chapter 12: Compile-time vs Install-time 18

12 Compile-time vs Install-time

Software whose installation is managed with Stow needs to be installed in one place (the
package directory, e.g. ‘/usr/local/stow/perl’) but needs to appear to run in another
place (the target tree, e.g., ‘/usr/local’). Why is this important? What’s wrong with Perl,
for instance, looking for its files in ‘/usr/local/stow/perl’ instead of in ‘/usr/local’?

The answer is that there may be another package, e.g., ‘/usr/local/stow/perl-extras’,
stowed under ‘/usr/local’. If Perl is configured to find its files in ‘/usr/local/stow/perl’,
it will never find the extra files in the ‘perl-extras’ package, even though they’re intended
to be found by Perl. On the other hand, if Perl looks for its files in ‘/usr/local’, then it
will find the intermingled Perl and ‘perl-extras’ files.

This means that when you compile a package, you must tell it the location of the run-
time, or target tree; but when you install it, you must place it in the stow tree.

12.1 Advice on changing compilation and installation
parameters

Some software packages allow you to specify, at compile-time, separate locations for instal-
lation and for run-time. Perl is one such package; see Section 12.5 [Perl and Perl 5 Modules],
page 20. Others allow you to compile the package, then give a different destination in the
‘make install’ step without causing the binaries or other files to get rebuilt. Most GNU
software falls into this category; Emacs is a notable exception. See Section 12.2 [GNU
Emacs], page 19, and Section 12.3 [Other FSF Software], page 19.

Still other software packages cannot abide the idea of separate installation and run-time
locations at all. If you try to ‘make install prefix=/usr/local/stow/foo’, then first
the whole package will be recompiled to hardwire the ‘/usr/local/stow/foo’ path. With
these packages, it is best to compile normally, then run ‘make -n install’, which should
report all the steps needed to install the just-built software. Place this output into a file,
edit the commands in the file to remove recompilation steps and to reflect the Stow-based
installation location, and execute the edited file as a shell script in place of ‘make install’.
Be sure to execute the script using the same shell that ‘make install’ would have used.

(If you use GNU Make and a shell [such as GNU bash] that understands pushd and
popd, you can do the following:

1. Replace all lines matching ‘make[n]: Entering directory dir’ with ‘pushd dir’.
2. Replace all lines matching ‘make[n]: Leaving directory dir’ with ‘popd’.
3. Delete all lines matching ‘make[n]: Nothing to be done for rule’.
Then find other lines in the output containing cd or make commands and rewrite or

delete them. In particular, you should be able to delete sections of the script that resemble
this:

for i in dir_1 dir_ 2 ...; do \
(cd $i; make args ...) \
done

Note, that’s “should be able to,” not “can.” Be sure to modulate these guidelines with
plenty of your own intelligence.

The details of stowing some specific packages are described in the following sections.

Chapter 12: Compile-time vs Install-time 19

12.2 GNU Emacs

Although the Free Software Foundation has many enlightened practices regarding Makefiles
and software installation (see see Section 12.3 [Other FSF Software|, page 19), Emacs, its
flagship program, doesn’t quite follow the rules. In particular, most GNU software allows
you to write:

make
make install prefix=/usr/local/stow/package

If you try this with Emacs, then the new value for prefix in the ‘make install’ step will
cause some files to get recompiled with the new value of prefix wired into them. In Emacs
19.23 and later,! the way to work around this problem is:

make
make install-arch-dep install-arch-indep prefix=/usr/local/stow/emacs

In 19.22 and some prior versions of Emacs, the workaround was:

make
make do-install prefix=/usr/local/stow/emacs

12.3 Other FSF Software

The Free Software Foundation, the organization behind the GNU project, has been uni-
fying the build procedure for its tools for some time. Thanks to its tools ‘autoconf’ and
‘automake’, most packages now respond well to these simple steps, with no other interven-
tion necessary:

./configure options
make
make install prefix=/usr/local/stow/package

Hopefully, these tools can evolve to be aware of Stow-managed packages, such that
providing an option to ‘configure’ can allow ‘make’ and ‘make install’ steps to work
correctly without needing to “fool” the build process.

12.4 Cygnus Software

Cygnus is a commercial supplier and supporter of GNU software. It has also written several
of its own packages, released under the terms of the GNU General Public License; and it
has taken over the maintenance of other packages. Among the packages released by Cygnus
are ‘gdb’, ‘gnats’, and ‘dejagnu’.

Cygnus packages have the peculiarity that each one unpacks into a directory tree with a
generic top-level Makefile, which is set up to compile all of Cygnus’ packages, any number
of which may reside under the top-level directory. In other words, even if you're only
building ‘gnats’, the top-level Makefile will look for, and try to build, ‘gdb’ and ‘dejagnu’
subdirectories, among many others.

The result is that if you try ‘make -n install prefix=/usr/local/stow/package’ at
the top level of a Cygnus package, you’ll get a bewildering amount of output. It will then
be very difficult to visually scan the output to see whether the install will proceed correctly.
Unfortunately, i