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The paper describes how to recover the sensor trajectory for an aerial lidar collect using the data
for multiple-return lidar pulses. This work extends the work of |Gatziolis and McGaughey| (2019)
by performing a least-squares fit for multiple pulses simultaneously with a spline fit for the sensor
trajectory. The paper also shows how to incorporate scan-angle data following the method of |Hartzell

(2020).

1. INTRODUCTION

Lidar data sets, typically provided in the form of “las”
files (ASPRS| 2019)), often do not contain information on the
location of the sensor platform as a function of time. For
datasets which include the GPS time for each return, it is pos-
sible to identify the multiple returns originating from a given
lidar pulse and thus determine its direction. By combining the
data for multiple pulses emitted in a short time, it is possible
to “triangulate” for the position of the sensor. This idea was
proposed by |Gatziolis and McGaughey| (2019) who showed
how to obtain a full sensor trajectory.

Here we reformulate this problem with a view to obtain-
ing a more accurate trajectory. The trajectory is modeled as
a cubic spline fit. Such a fit independently fits the x, y, and
z components of R(t). The unknowns in this model are the
parameters specifying the cubic splines. The knowns are the
positions (and times) of the multiple returns from individual
lidar pulses. The optimization problem is then to adjust pa-
rameters specifying the trajectory to minimize the RMS error
between the returns and a ray drawn from the sensor position
to the mean position of the return. This is a rather complex
nonlinear optimization problem. Fortunately, it is one that is
easily handled by the software library (Ceres Solver| (2018)).

The errors in this problem are primarily quantization errors
in the positions of the returns. In the normal post-processing
of a lidar collect, the positions of the returns are computed
from IMU data from the sensor platform, the scan angle of the
lidar sweep, and timing information for the returns. If these
positions were recorded accurately, it would be possible to de-
termine a precise ray for a given pulse (with 2 or more returns)
and sensor position could be accurately triangulated from the
rays nearly simultaneous pulses. However, the default preci-
sion of the return positions in a 1as file is 0.01 m. If the two
returns are 2 m apart and the sensor is flying 1000 m above the
ground then, then the possible rays consistent with the return
data span 5m at the altitude of the sensor. The uncertainty
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in the triangulation with such rays is increased because of ill
conditioned triangles (leading chiefly to a large uncertainty in
the height of the sensor).

2. FIXED SENSOR

In order to introduce the concepts, let us start first by as-
suming that the sensor is fixed and emits n multi-return pulses,
indexed by ¢ € [1,n]. We shall only consider the first and last
returns (ignoring any intermediate returns). We denote posi-
tions of the returns by

ri =r; +d;pi, (D

where superscripts + denote first and last returns, p; is the
unit vector in the direction from the last to the first return, and
d; 1s half the distance between the returns.

A. The reverse method

The goal now is to determine the position R consistent with
these returns. One approach is to consider the n rays

r; + 5;p; ()

where the distance along the ray is parameterized by s; and to
solve the 3n equations

for the 3 + n unknowns R and s;. This is an overdetermined
system for 2 or more pulses and then we can use standard lin-
ear algebra methods to find the best solution which minimizes
Zi h?, the so-called least-squares solution.

This is the approach used by |Gatziolis and McGaughey
(2019) who consider just pairs of pulses n = 2. The prob-
lem is that the resulting solution for R is typically not the
optimal solution for the trajectory problem because the sys-
tem of equations does not involve the return separation d; so
pulses with closely separated returns and treated equally to
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pulses with widely separated returns. In reality, the latter re-
turns should be weighted more heavily.

Gatziolis and McGaughey address this problem by select-
ing an optimal pair of returns based on the return separation
and the angle between the pulses. This is based on a weighting
function which needs to be separately estimated.

We use a simplified version of this linear least-squares
problem to find an initial trajectory for our method described
below. We use the z component of the residue equations to
eliminate s; from the system. The equations are then

<7n72,:r - Pia Ti,z) - (Rx - Pia Rz) = hi,x ~ 07
DPiz Di,z
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Ty — T; — | R, — R, ) =h;, =0.

We can write this as the explicit overdetermined linear system

A-R-B=H~=0, “)

where A is the 2n x 3 matrix

A (1) —Die/ iz (5)

1
0 1 —piy/pi-

(two rows for each of the n pulses), B is the 2n column vector

Tz',a: - (pi,m/pi,z)ri,z (6)

B =
Tiy — (Diy/Dis2)Ti,z

and R is the unknown sensor position to solve for.

This reduces the problem to 2n equations for 3 unknowns.
In this formulation we determine the horizontal plane z =
R, in which the rays are most tightly clustered. This is not
the same problem as before; however with typical aerial lidar
collects the two solutions for R will be reasonably close. The
difference is immaterial in our application since this solution
for R is only used as an initial estimate.

It’s also possible to extend this method to allow the position
of the sensor to be a function of time, for example,

R=Ry,+ Vit

The least-squares problem is now

Ro e
A-<V>BH~O, 7)

where A is now the 2n x 6 matrix

A— 10 —pio/piz ti 0 —tipia/pi- ®)
01 —piy/piz 0 ti —tiDiy/Di-

(and B is unchanged). Here ¢; is the time of the ith pulse.

Because pulses with widely separated returns constrain the
possible position of the sensor more strongly than those with
nearby returns, we multiply the rows in A and B associated
with the ith pulse by d;, thereby appropriately weighting the
least-squares problem.

As a practical matter, Eq. (7) can be solved to give Ry and
V by a suitable linear algebra package. For example, its solu-
tion can be obtained using [Eigen| (2018) with, for example,

RV = A.jacobiSvd() .solve (B);

B. The forward method

We term the above method of estimating R described above
the reverse method, because the rays are traced back from the
returns to the sensor. An alternative is to trace the rays from
R to the midpoint of returns, the forward method. Thus each
ray is given by

r; + s;d;, &)

where q; = R — r;. The rays now all intersect at R and
the optimization problem is to find R and s; such that Eq. (9)
is approximately equal to the position of the first return, r,
from Eq. (1) i.e.,

d;p; — 8;q; = €; ~ 0. (10)

Again we have 3n equations with 3 + n unknowns. How-
ever the quantities that are being minimized, e;, is the dis-
tance between the ray and the given positions of the returns.
This method now naturally gives more weight to widely sep-
arated returns and the solution will similarly be more heavily
governed by rays forming well-conditioned triangles.

Incidentally, the ray from R to r; passes equally close to the
first and last returns, so it is only necessary to the minimize the
distance to the first returns.

This system of equations is no longer linear, so it cannot
be solved by linear algebra techniques. However, it is ide-
ally suited for the Ceres Solver package. This finds the least-
squares solution for nonlinear optimization problems. It also
features

e Automatic determination of the Jacobian needed to find
the solutions. This is achieved by writing the formulas
in standard notation but with the variables having a C++
type “Jet” which combines a quantity and its derivative
and, through overloaded operators and functions, fol-
lows all the standard rules of differentiation.

e A robust optimization. A standard problem of least-
squares methods is that outliers in the data can skew
the solution away from the “right” one. Ceres Solver
includes a variety of “loss functions” which cause the
effect of errors in the equations to fall off past some
threshold. For example in this case, the threshold for
the loss functions might be set to 0.01 m.



C. Simplifying the forward method

We can simplify the problem by observing that e; is min-
imized with s; =~ d; and that the resulting e; then spans a
two-dimensional space perpendicular to p;. Thus we can ap-
proximate the error e; by projecting the R — r; onto the plane
perpendicular to p; at the first return. The first step is to con-
vert to a primed coordinate system with r; at the origin and
with the z’ axis parallel to p;. This is achieved by the rotation
matrix

pz?,xpi»z + pzz,y _(]— - pl,z)pzxpz,y

P, + 07, ZP?,I + 229?,@, .
Mi = 7(1 - pi,z)pi,rpi,y pi,z + pi,ypi7z —pi
P, +07, P, +07, v
Dix Piy Di,z
(11)

This matrix rotates the coordinate system about the axis z X p;.
Applying this translation and rotation to the sensor position
gives

q,=M;-q; (12)

Finally we project g} onto the plane z’ = d which gives

e = (/’ ) (13)
4q; . q;
’ Y

Now the number of unknowns is just 3, the coordinates of
R, and the number of equations is 2n, e; ~ 0 for each two-
component vector e;

Solving this least-squares problem with Ceres Solver en-
tails writing a C++ class implementing a “residue block”.
The constructor for the class takes the knowns for a partic-
ular pulse, i.e., r;, p;, and d;, and implements a function
object which accepts the unknowns R as input and returns
the residue e;. This entails merely expressing the equations
above as computer code. The problem is specified by n such
residue blocks and an initial guess for R (obtained, for exam-
ple, by the reverse linear least-squares problem). Ceres Solver
repeatedly invokes the function objects while adjusting R to
minimize Y €?. Because of the automatic differentiation built
into Ceres Solver, it can compute the Jacobian for the problem
which says how each component of e; changes as each com-
ponent of R is varied. This allows Ceres Solver to vary R in
an optimal way in its search for the least-squares solution.

3. THE TRAJECTORY COMPUTATION

The discussion above solves for the sensor position at a sin-
gle instant of time. Of course, the sensor position is typically
moving and it is convenient to model the motion as a cubic
spline. One approach would be to perform a series of fixed
sensor calculations, e.g., at 0.01 s intervals including for each
calculation 10 pulses sampled at 0.001 s intervals and then to
fit a spline to the resulting positions.

This approach has the drawback that some of the posi-
tions may be better approximated than others and the spline
fit should respect this. This could be achieved by assigning
weights to the various position estimated and this, essentially,
is how Gatziolis and McGaughey addressed this issue. How-
ever this put another layer of complexity into the problem.

However, in the spirit of Ceres Solver, it make more sense
to pose the entire exercise as a single least-squares problem.
Let’s start by describing how to express a cubic spline.

A. The cubic spline

A cubic spline is a piece-wise cubic polynomial function
which in our application we will use to approximate R.(t).
Each component of R(¢) can be fit independently of the oth-
ers. So we only need to consider a cubic spline for a scalar
function f(¢) defined between Ty and Tx = Tp + K At. The
time interval divided in K blocks of duration At, with the
kth block consisting of the interval Ty, < ¢t < Tj,1 where
T, =To+ kAt and k € [0, K). At internal block bound-
aries, t = Ty, for k € (0, K'), we require that f(¢), f'(¢), and
/" (t) be continuous.

We shall specify the cubic polynomial for the kth block by
the values of f(¢) and g(t) = At f'(¢) at the block bound-
aries. It is convenient to introduce a scaled centered time vari-
able the block 7 = (¢ —T}) /At — %. At the block boundaries,
wehave f = frandg = gy at 7 = —1 and f = fi41 and
g = gkt+1 atT = % It is now a simple matter, e.g., by using
the algebra system, Maximal (2020), to find the polynomial
satisfying the boundary conditions

f(T) =ao+a17+a272+a373, (14)
where

ap = 5(4f+ —g-),
ay = %(Gf* - g+)7

az = 39-,
az = —=2f_+gy,
f:l: = karl :l:fka

g+ = Gk+1 £ Gk-

By specifying the cubic polynomial by its values and
derivatives at the block boundaries, we ensure continuity of
f(t) and f’(t). The jump in the second derivative is given by

6(fis1 — fee1) — 2(gra1 + gr—1) — 8
ff”(Tk) (fk+1 fk 1) (tg2k+1 9k 1) gk.
(15)

We will then add A f”(T}) = 0 to the optimization problem.
In some situations, portions of a lidar collect might con-
sist of “only returns”. These are, of course, not useful of de-
termining the sensor trajectory by this method. However, if
the stretch of only returns spans multiple blocks in the cubic
spline, then the spline determination becomes badly condi-
tioned. We address this by enforcing an additional constraint




on the boundaries between two block with few multiple re-
turns, namely that the third derivative is continuous. The jump
in the third derivative is

_ A - 2(fr41 + fre—1) + (Gr+1 — 9k—1)

Af/// (Tk) Atg

(16)
In order to improve the smoothness of the trajectory, we add
a constraint A f"”'(T},) =~ 0 for all block boundaries. How-
ever, the weight for this constraint is very small except when
the boundary separates blocks essentially devoid of multiple
returns.

B. The optimization problem

We are now ready to set up the optimization problem for
the entire trajectory. The knowns are ¢;, r;, p;, and d; for
n pulses. These are the same as for the fixed sensor prob-
lem with the addition of the time ¢; for each pulse. The un-
knowns are the sensor positions, R(t) and velocities, R’(t),
at the block boundaries ¢ = T}, for k € [0, K].

The residue block for Ceres Solver now includes the time
t;. Each pulse is assigned to a particular time block and the
constructor converts this time to the scaled time 7. The corre-
sponding function object now takes the trajectory position and
velocities at the block boundaries as input. It then uses the
stored value of 7 to evaluate the corresponding cubic poly-
nomials for the 3 components of the sensor position R(t;).
The calculation then proceeds as in the fixed-sensor case and
returns a two-component vector for the residue.

There is now also a new type of residue block to enforce the
continuity of the acceleration at the internal block boundaries.
The function object takes R(Tx+1), R/ (Tk+1), and R/ (T%),
and returns the jump in R” (T}).

Overall there are 6(K + 1) unknowns (the positions and
velocities at the block boundaries). The number of equations
is 2n for the pulse residues, plus 3(K — 1) for the acceleration
jump constraints, plus, optionally, another 3(K — 1) for the
constraints on the jump in the third derivatives.

4. TESTING

We have tested this on flights lasting about a minute with
At = 1s and sampling one multi-return pulse every 0.001s
from the lidar data (we select the pulse with the largest dis-
tance between its first and last returns). Even though this
involves a system of tens of thousands of equations, Ceres
Solver handles it without difficulty in a few seconds of CPU
time.

Figure |1| shows the discrepancy in the estimated trajectory
from the IMU data for the sensor for a lidar capture over Hous-
ton, TX.

5. INCLUDING THE SCAN ANGLE DATA

The method outlined above depends on there being suffi-
cient multiple returns present in the data. |[Hartzell (2020) sug-
gested using the scan angle of the lidar pulse as an alternative
method for triangulating the position of the sensor platform.
This data can be seamlessly merged into our method allow-
ing the sensor position to be estimated even in the absence of
multiple returns. This has the added benefit that the attitude
of the sensor platform can be estimated.

The scan angle of the lidar pulse is the angle measured
rightwards from nadir of the lidar pulse as it sweeps left and
right either side of the sensor platform. In some 1as formats,
this is only recorded to the nearest whole degree.

We start by determining the direction of the laser pulse
given the yaw 1), pitch 6, and roll ¢ of the sensor platform
and the scan angle «. The standard coordinate system is z
east, y north, and z up. (At this point, we don’t worry about
whether directions are true or in a grid system.) Given that
the sensor starts in a reference orientation, level and heading
due north, the sensor orientation is found by rotating by +¢
about the y axis, followed by a rotation +6 about the x axis,
followed by a rotation —1) about the z axis. In the reference
orientation, the lidar pulse is emitted a direction obtained by
rotating the downward vector by —a; about the y axis (thus
positive «; is to the right of the sensor path). Taking account
of the attitude of the sensor platform, the direction of the pulse
is

N(=v2z) - N(+6%) - N(—a;3) - (=2), (17)

where N(n) is the matrix giving a right-handed rotation by
|n] about the axis fi. Note that «; includes both the roll of the
sensor platform ¢ and the defection of the lidar pulse relative
to the sensor platform; so ¢ does not appear here.

Now consider a lidar pulse emitted with the sensor po-
sitioned at R and the lidar return recorded at r; with scan
angle «;, so that the ray from the sensor to the return is
—q; = r; — R. We now reverse the order of rotations in
Eq. to put this ray back in a nominal reference frame for
the lidar pulse,

q; = N(+0:3) - N(=0%) - N(+92) - (—q;).  (18)

We require that g/ be nearly parallel to the downward direc-
tion —z; or, equivalently, that the horizontally projected 2-

vector
1 (4,
a; = —— j,L (19)
qi,z qz'yy
be close to zero.

The components of projected vector a; are in the reference
frame of the sensor; thus the x component reflects an error
in the given scan angle «;, while the y component reflects an
error in the unknown pitch 6. Because the recorded data for
«; often includes the rather large quantization error of 1°, we
might wish to weight the y component of a; more heavily.
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FIG. 1

The discrepancy in the estimated trajectory from the IMU data for the sensor for a lidar capture over Houston, TX, the curves

labeled “ceres.” The RMS error in the horizontal, resp. vertical, position of the sensor is 36 mm, resp. 90 mm. For comparison, also shown
is the discrepancy using the method of |Gatziolis and McGaughey| (2019), the curves labeled “G + McG”, with corresponding horizontal,

resp. vertical, errors of 221 mm, resp. 354 mm.

The conditions a; =~ 0 are just other constraints we can
add to our optimization problem for Ceres Solver. There are
various ways to include such constraints.

e After estimating the sensor trajectory using the infor-
mation from the multiple returns, the sensor attitude
(yaw and pitch, only) can be estimated separately using
the scan-angle constraints. In this second optimization
the sensor position would be held fixed (as determined
from the multiple return data).

o Alternatively, the scan-angle constraints could be com-
bined with the multiple-return constraints allowing the
position and attitude of the sensor platform to be jointly
estimated. This would allow gaps in the multiple-return
data to be bridged reliably.

e In the absence of multiple-return data, the scan-angle
constraints can be used alone to estimate the sensor
position and attitude. This is typically a rather ill-
conditioned optimization since changes in the estimated
pitch are partially canceled by a movement of the esti-
mated position along the path of the sensor.

e In the previous scenario, the pitch can be fixed at some
nominal value, e.g., § = 0; thus the heading ® is the
only component of the attitude determined. This re-
sults in a more robust optimization problem (albeit one
which yields a sensor position with a large uncertainly
in the direction of travel). This is the essence of the
method proposed by Hartzell (2020); however, in the
embodiment described here many more pulses would
normally be included than envisioned by Hartzell. (In-
cidentally, the heading need not necessarily coincide
with the path of the sensor over the ground, since the
heading will typically need to be adjusted to compen-
sate for cross winds.)

Finally, it may be possible to recover an estimate for the
roll of the sensor platform by analyzing the scan angles. For
example, if the terrain yields dense returns from both sides
of the sensor platform, merely passing «; through a low-pass
filter might yield a useful approximation to —¢. This could
easily be cast as an optimization problem for Ceres Solver
yielding a spline fit for ¢. If the lidar returns are not dense
enough, e.g., if the sensor is flying over the edge of a lake with



few returns from the water, it may still be possible to recover
the roll by fitting a saw tooth function to «; as a function of
t;.
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